Security Content Automation
Introduction to Day 2

J Todd Wittbold
The MITRE Corporation
IA Content vs IA Tools

- **IA Content**
 - Knowledge about vulnerabilities, threats, misconfigurations, best practices, etc
 - STIGS, Benchmarks, IAVA, US-Cert alerts

- **IA Tools**
 - Vulnerability scanners, IDS, Patch management systems, AV products, configuration management systems
IA Content vs IA Tools

• Today:
 – Each IA tool vendor maintains large repositories of proprietary IA content
 – Naming conventions and testing semantics are specific to the product
 – Analysis results and reporting formats are specific to the product
• Tomorrow:
 – Standardized specifications of the most significant IA content types (e.g. NIST XP Config Guidance)
 – Consistent naming, testing, results reporting
Benefits of Decoupling IA Content from IA Tools

• Consistency, transparency, and concreteness in the specification and measurement of IA requirements

• Consistency in the communication of IA information between tool categories (e.g. vuln assessment to patch management, asset inventory to vuln assessment)

• Organizational subcomponents can make autonomous tool investments and still achieve global integrated reporting
Benefits of Decoupling IA Content from IA Tools (2)

• Policy writers have concrete foundations for expressing requirements for technical controls
• IA tool vendors can import (vs create) government supplied IA content
• Software vendors and government agencies have improved technical collaboration on secure configuration guidance for vendor products
How To Decouple IA Content from IA Tools

• Identify the basic entities that IA Content needs to reference
 – Vulnerabilities, configuration settings, etc

• Provide a machine-readable language for making assertions about the basic IA entities (XCCDF/OVAL)

• Express IA requirements as documents in the XCCDF/OVAL language
The Pieces

• Enumerations (CVE, CCE, UPPN)
 – Catalog the fundamental entities in IA business
 • Software packages, vulnerabilities, misconfigurations

• Languages (XCCDF, OVAL)
 – Support the creation of machine-readable assertions about those entities

• Content (STIGS, Benchmarks, Checklists)
 – Packages of assertions supporting a specific application
 • Vuln assessment, config guidance, asset inventory

• Tools
 – Interpret IA content in context of enterprise network
Enumerated Entities

• **Vulnerabilities**
 - CVE-2006-4838
 - Multiple cross-site scripting (XSS) vulnerabilities in DCP-Portal SE 6.0 allow remote attackers to inject arbitrary web script or HTML via the (1) root_url and (2) dcp_version parameters in (a) admin/inc/footer.inc.php, and the root_url, (3) page_top_name, (4) page_name, and (5) page_options parameters in (b) admin/inc/header.inc.php

• **Configuration Settings**
 - CCE-W2K-178
 - **Definition:** The "restrict guest access to application log" policy should be set correctly.
 - **Technical Mechanism:**
 1. HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\EventLog\Application\RestrictGuestAccess
 2. defined by Group Policy
 - **Parameters** enabled/disabled

• **Software Packages**
Languages

- **OVAL**
 - XML language framework for assertions about software configuration state
- **XCCDF**
 - XML language framework for packaging and documenting checklist requirements and results
- **Checklist item** ~ OVAL assertion about s/w configuration parameter(s)
Interactive logon: Require CTRL+ALT+DEL

Disabling the Ctrl+Alt+Del security attention sequence can compromise …

使我获得：

oval:gov.nist.1:def:69
Vulnerability Content Example

- OVAL vulnerability definition binds a CVE id to an OVAL test

<table>
<thead>
<tr>
<th>OVAL-ID: oval:org.mitre.oval: def:399</th>
<th>Date: 2006-09-08</th>
</tr>
</thead>
<tbody>
<tr>
<td>Status: DRAFT</td>
<td></td>
</tr>
<tr>
<td>Class: vulnerability</td>
<td></td>
</tr>
<tr>
<td>Ref-ID: CVE-2006-3590</td>
<td></td>
</tr>
<tr>
<td>Schema Version: 5</td>
<td></td>
</tr>
<tr>
<td>Platform(s): Microsoft Windows 2000</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Description:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unspecified vulnerability in mso.dll, as used by Microsoft PowerPoint 2000 through 2003, allows remote user-complicit attackers to execute arbitrary commands via a crafted PPT file, which causes a "memory corruption error," and exploited by Trojan.PPDropper.B. NOTE: As of 20060714, due to the vagueness of the initial disclosure, it is uncertain whether this is related to CVE-2006-1540 or CVE-2006-3493. Other PowerPoint issues were disclosed in the same time frame, including CVE-2006-3655, CVE-2006-3656, and CVE-2006-3660.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Definition Synopsis:</th>
</tr>
</thead>
<tbody>
<tr>
<td>- PowerPoint 2000</td>
</tr>
<tr>
<td>- AND the version of Mso9.dll is less than 9.0.0.8948</td>
</tr>
<tr>
<td>- OR PowerPoint 2002</td>
</tr>
<tr>
<td>- AND the version of Mso.dll is less than 10.0.6811.0</td>
</tr>
<tr>
<td>- OR PowerPoint 2003</td>
</tr>
<tr>
<td>- AND the version of Mso.dll is less than 11.0.8036.0</td>
</tr>
</tbody>
</table>
Stakeholder Questions (1)

• Government IA Policy Authors
 – How can portions of my IA Policy benefit from NIST SCAP Content?

• Government IA Teams
 – How can I use NIST SCAP enabled products in my enterprise?

• IA Product vendors
 – How can I use NIST SCAP content into my product?
 – How can my product better interoperate with other SCAP enabled products?
Stakeholder Questions (2)

• Software Product Publishers
 – What to propose as baseline security configuration settings for each product?
 – How to precisely specify which of my products are affected by a vulnerability?
 – How to precisely determine when my product is installed and which version of that product is installed?