Virtualization (Panel Discussion)
4th Annual IT Security Automation Conference

September 24, 2008
Virtualization (Panel Discussion)

ABSTRACT:
The percentage of enterprises deploying virtualization continues to increase exponentially and virtualization is becoming a fundamental technology for computing efficiencies. Server and client virtualization provides numerous benefits to the enterprise, but not without security concerns. The panel will discuss virtualization security, recommended methods to address security concerns, as well as advancements in hardware and software to make virtualization more secure.

Panel:
Steven Boesel, VMware
Chuck Roose, General Dynamics C4 Systems
Russ Fromkin, Intel Corporation
Impact of Virtualization

“Virtualization is the highest impact trend changing infrastructure and operations through 2012. It will change how you manage, how and what you buy, how you deploy, how you plan, and how you charge.”

Virtualization Changes Virtually Everything, Gartner Special Report, March 28, 2008
Dilbert on Virtualization

Our servers are using too much electricity. We need to virtualize.

I did my part by reading about virtualization in a trade journal. Now you do the software part.

Why is your part taking so long?
Dilbert on Virtualization (2)

There's no need to worry about the server virtualization project.

In phase one, a team of blind monkeys will unplug unnecessary servers.

In phase two, the monkeys will hurl software at whatever is left.

Voilà!
“Information Protection”

Typical Software Vulnerabilities:
• Virus, Worms, etc.
• Spyware, secret stealing
• Spam, Adware

Typical Software Exposures:
• Using unprotected regions for system code
• Buffer Overflow
• Failing to set locks

Internal misuse:
• Activity out of policy, or other unwanted

Platform-based vulnerabilities:
• Hyperjacking, rootkits
 – Blue Pill – VMM injection and system control
• BIOS and SMM-based attacks

Data or security techniques can not be compromised under any conditions
Hardware Based Technologies
Intel® Virtualization Technology Evolution

Vector 4: Trust

Vector 3: IO Device Focus

Vector 2: Chipset Focus

Vector 1: Processor Focus

VMM Software Evolution

Yesterday: No HW Support

2005-2006 With CPU Support

2007-2008 With Chipset Support & I/O Enhancements

Intel VT-x
- Software-only VMMs
- Binary translation
- Paravirtualization
- Device emulations

Close basic processor “virtualization holes” in Intel® 64 & Itanium CPUs

Simpler and more secure VMM through use of hardware VT support

Better IO/CPU perf and functionality via hardware-mediated access to memory

Richer IO-device functionality and IO resource sharing

Intel VT-d
- Performance extensions VTx/VTi EPT, APIC-TPR, VPID, ECRR, APIC-V

Core support for IO robustness & device assignment via DMA remapping

Perf improvements for interrupt intensive env, faster VM boot

Intel VT-c
- PCI-SIG SR-IOV Support
- VMDq: Enhanced data processing
- I/OAT: I/O or data Acceleration

Interrupt isolation & remapping PCI-SIG ATS support

Intel TXT
- Trusted Execution:
 - Secure Launch
 - Memory protection

Yesterday:
No HW Support

2005-2006 With CPU Support

2007-2008 With Chipset Support & I/O Enhancements

Copyright © 2008, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners
Intel Virtualization Technology

- Applications run in ring 3 as expected
- Applications remain unchanged

- OS runs at privilege level 0 as expected
- No excessive faulting
- No expensive SW virtualization “hacks”
- Improved performance and stability

- VMM now runs in new CPU execution mode
- HW-based mode transitions
- Memory protection in HW
- VMM is independent of HW
- VMM controls memory paging state and exceptions
VT-d Key Functions

Provides an architecture for DMA remapping that improves system reliability, enhances security and enables direct assignment of I/O devices to unmodified or paravirtualized VMs.

Device/DMA protection

- VMM uses Intel® VT Technology to ensure DMA devices cannot read or write to protected memory pages through VT-d
- Prevent system crashes due memory corruption by device drivers
- Direct Assignment of Devices (or Virtual Devices) to VMs

Guest partitions

- Separates privileged and non-privileged resources; Isolates domains
TXT Key Functions

Provide **verifiable integrity of a measurement launch environment** that can lead to someone **establishing a system as trusted**.

HW Configuration and Software Measurement, Secure Boot

- Validation of current platform configuration
- Measurement (160b hash) of components (AC Module, VMM, SOS, Applications) during launch process with participation of all processor cores
 - Creates dynamic root of trust (DRTM) for measurement of the launched environment
- Proper storage of measurements in TPM and reporting
- Intel VT-d extensions that allow the launched environment to control access of DMA devices to specific memory locations
Virtualization in Military, Aerospace and Government

Secret

Top Secret

Unclassified

System Management

Middleware

Virtual BIOS/Drivers

RTOS

Virtual BIOS/Drivers

Virtual BIOS/Drivers

Virtual BIOS/Drivers

Windows*

Unmodified Linux*

Secure Middleware

Unmodified Linux*

Virtual BIOS/Drivers

Virtual BIOS/Drivers

Virtual BIOS/Drivers

Light-Weight, Highly Trusted Separation Kernel

Cores

0 1 2 3

Physical Memory

Assigned Devices

Shared Devices

Ring 3

Ring 0

Non Root Mode

Root Mode

Cores

Physical Memory

Assigned Devices

Shared Devices