Search Results (Refine Search)
- Keyword (text search): cpe:2.3:a:apache:tomcat:9.0.16:*:*:*:*:*:*:*
- CPE Name Search: true
Vuln ID | Summary | CVSS Severity |
---|---|---|
CVE-2023-41080 |
URL Redirection to Untrusted Site ('Open Redirect') vulnerability in FORM authentication feature Apache Tomcat.This issue affects Apache Tomcat: from 11.0.0-M1 through 11.0.0-M10, from 10.1.0-M1 through 10.0.12, from 9.0.0-M1 through 9.0.79 and from 8.5.0 through 8.5.92. The vulnerability is limited to the ROOT (default) web application. Published: August 25, 2023; 5:15:09 PM -0400 |
V3.1: 6.1 MEDIUM V2.0:(not available) |
CVE-2023-28708 |
When using the RemoteIpFilter with requests received from a reverse proxy via HTTP that include the X-Forwarded-Proto header set to https, session cookies created by Apache Tomcat 11.0.0-M1 to 11.0.0.-M2, 10.1.0-M1 to 10.1.5, 9.0.0-M1 to 9.0.71 and 8.5.0 to 8.5.85 did not include the secure attribute. This could result in the user agent transmitting the session cookie over an insecure channel. Published: March 22, 2023; 7:15:10 AM -0400 |
V3.1: 4.3 MEDIUM V2.0:(not available) |
CVE-2022-42252 |
If Apache Tomcat 8.5.0 to 8.5.82, 9.0.0-M1 to 9.0.67, 10.0.0-M1 to 10.0.26 or 10.1.0-M1 to 10.1.0 was configured to ignore invalid HTTP headers via setting rejectIllegalHeader to false (the default for 8.5.x only), Tomcat did not reject a request containing an invalid Content-Length header making a request smuggling attack possible if Tomcat was located behind a reverse proxy that also failed to reject the request with the invalid header. Published: November 01, 2022; 5:15:10 AM -0400 |
V3.1: 7.5 HIGH V2.0:(not available) |
CVE-2021-43980 |
The simplified implementation of blocking reads and writes introduced in Tomcat 10 and back-ported to Tomcat 9.0.47 onwards exposed a long standing (but extremely hard to trigger) concurrency bug in Apache Tomcat 10.1.0 to 10.1.0-M12, 10.0.0-M1 to 10.0.18, 9.0.0-M1 to 9.0.60 and 8.5.0 to 8.5.77 that could cause client connections to share an Http11Processor instance resulting in responses, or part responses, to be received by the wrong client. Published: September 28, 2022; 10:15:09 AM -0400 |
V3.1: 3.7 LOW V2.0:(not available) |
CVE-2022-25762 |
If a web application sends a WebSocket message concurrently with the WebSocket connection closing when running on Apache Tomcat 8.5.0 to 8.5.75 or Apache Tomcat 9.0.0.M1 to 9.0.20, it is possible that the application will continue to use the socket after it has been closed. The error handling triggered in this case could cause the a pooled object to be placed in the pool twice. This could result in subsequent connections using the same object concurrently which could result in data being returned to the wrong use and/or other errors. Published: May 13, 2022; 4:15:06 AM -0400 |
V3.1: 8.6 HIGH V2.0: 7.5 HIGH |
CVE-2022-29885 |
The documentation of Apache Tomcat 10.1.0-M1 to 10.1.0-M14, 10.0.0-M1 to 10.0.20, 9.0.13 to 9.0.62 and 8.5.38 to 8.5.78 for the EncryptInterceptor incorrectly stated it enabled Tomcat clustering to run over an untrusted network. This was not correct. While the EncryptInterceptor does provide confidentiality and integrity protection, it does not protect against all risks associated with running over any untrusted network, particularly DoS risks. Published: May 12, 2022; 4:15:07 AM -0400 |
V3.1: 7.5 HIGH V2.0: 5.0 MEDIUM |
CVE-2021-41079 |
Apache Tomcat 8.5.0 to 8.5.63, 9.0.0-M1 to 9.0.43 and 10.0.0-M1 to 10.0.2 did not properly validate incoming TLS packets. When Tomcat was configured to use NIO+OpenSSL or NIO2+OpenSSL for TLS, a specially crafted packet could be used to trigger an infinite loop resulting in a denial of service. Published: September 16, 2021; 11:15:07 AM -0400 |
V3.1: 7.5 HIGH V2.0: 4.3 MEDIUM |
CVE-2021-33037 |
Apache Tomcat 10.0.0-M1 to 10.0.6, 9.0.0.M1 to 9.0.46 and 8.5.0 to 8.5.66 did not correctly parse the HTTP transfer-encoding request header in some circumstances leading to the possibility to request smuggling when used with a reverse proxy. Specifically: - Tomcat incorrectly ignored the transfer encoding header if the client declared it would only accept an HTTP/1.0 response; - Tomcat honoured the identify encoding; and - Tomcat did not ensure that, if present, the chunked encoding was the final encoding. Published: July 12, 2021; 11:15:08 AM -0400 |
V3.1: 5.3 MEDIUM V2.0: 5.0 MEDIUM |
CVE-2021-30640 |
A vulnerability in the JNDI Realm of Apache Tomcat allows an attacker to authenticate using variations of a valid user name and/or to bypass some of the protection provided by the LockOut Realm. This issue affects Apache Tomcat 10.0.0-M1 to 10.0.5; 9.0.0.M1 to 9.0.45; 8.5.0 to 8.5.65. Published: July 12, 2021; 11:15:08 AM -0400 |
V3.1: 6.5 MEDIUM V2.0: 5.8 MEDIUM |
CVE-2021-25329 |
The fix for CVE-2020-9484 was incomplete. When using Apache Tomcat 10.0.0-M1 to 10.0.0, 9.0.0.M1 to 9.0.41, 8.5.0 to 8.5.61 or 7.0.0. to 7.0.107 with a configuration edge case that was highly unlikely to be used, the Tomcat instance was still vulnerable to CVE-2020-9494. Note that both the previously published prerequisites for CVE-2020-9484 and the previously published mitigations for CVE-2020-9484 also apply to this issue. Published: March 01, 2021; 7:15:14 AM -0500 |
V3.1: 7.0 HIGH V2.0: 4.4 MEDIUM |
CVE-2021-25122 |
When responding to new h2c connection requests, Apache Tomcat versions 10.0.0-M1 to 10.0.0, 9.0.0.M1 to 9.0.41 and 8.5.0 to 8.5.61 could duplicate request headers and a limited amount of request body from one request to another meaning user A and user B could both see the results of user A's request. Published: March 01, 2021; 7:15:13 AM -0500 |
V3.1: 7.5 HIGH V2.0: 5.0 MEDIUM |
CVE-2021-24122 |
When serving resources from a network location using the NTFS file system, Apache Tomcat versions 10.0.0-M1 to 10.0.0-M9, 9.0.0.M1 to 9.0.39, 8.5.0 to 8.5.59 and 7.0.0 to 7.0.106 were susceptible to JSP source code disclosure in some configurations. The root cause was the unexpected behaviour of the JRE API File.getCanonicalPath() which in turn was caused by the inconsistent behaviour of the Windows API (FindFirstFileW) in some circumstances. Published: January 14, 2021; 10:15:13 AM -0500 |
V3.1: 5.9 MEDIUM V2.0: 4.3 MEDIUM |
CVE-2020-17527 |
While investigating bug 64830 it was discovered that Apache Tomcat 10.0.0-M1 to 10.0.0-M9, 9.0.0-M1 to 9.0.39 and 8.5.0 to 8.5.59 could re-use an HTTP request header value from the previous stream received on an HTTP/2 connection for the request associated with the subsequent stream. While this would most likely lead to an error and the closure of the HTTP/2 connection, it is possible that information could leak between requests. Published: December 03, 2020; 2:15:12 PM -0500 |
V3.1: 7.5 HIGH V2.0: 5.0 MEDIUM |
CVE-2020-13943 |
If an HTTP/2 client connecting to Apache Tomcat 10.0.0-M1 to 10.0.0-M7, 9.0.0.M1 to 9.0.37 or 8.5.0 to 8.5.57 exceeded the agreed maximum number of concurrent streams for a connection (in violation of the HTTP/2 protocol), it was possible that a subsequent request made on that connection could contain HTTP headers - including HTTP/2 pseudo headers - from a previous request rather than the intended headers. This could lead to users seeing responses for unexpected resources. Published: October 12, 2020; 10:15:12 AM -0400 |
V3.1: 4.3 MEDIUM V2.0: 4.0 MEDIUM |
CVE-2020-13935 |
The payload length in a WebSocket frame was not correctly validated in Apache Tomcat 10.0.0-M1 to 10.0.0-M6, 9.0.0.M1 to 9.0.36, 8.5.0 to 8.5.56 and 7.0.27 to 7.0.104. Invalid payload lengths could trigger an infinite loop. Multiple requests with invalid payload lengths could lead to a denial of service. Published: July 14, 2020; 11:15:11 AM -0400 |
V3.1: 7.5 HIGH V2.0: 5.0 MEDIUM |
CVE-2020-13934 |
An h2c direct connection to Apache Tomcat 10.0.0-M1 to 10.0.0-M6, 9.0.0.M5 to 9.0.36 and 8.5.1 to 8.5.56 did not release the HTTP/1.1 processor after the upgrade to HTTP/2. If a sufficient number of such requests were made, an OutOfMemoryException could occur leading to a denial of service. Published: July 14, 2020; 11:15:11 AM -0400 |
V3.1: 7.5 HIGH V2.0: 5.0 MEDIUM |
CVE-2020-8022 |
A Incorrect Default Permissions vulnerability in the packaging of tomcat on SUSE Enterprise Storage 5, SUSE Linux Enterprise Server 12-SP2-BCL, SUSE Linux Enterprise Server 12-SP2-LTSS, SUSE Linux Enterprise Server 12-SP3-BCL, SUSE Linux Enterprise Server 12-SP3-LTSS, SUSE Linux Enterprise Server 12-SP4, SUSE Linux Enterprise Server 12-SP5, SUSE Linux Enterprise Server 15-LTSS, SUSE Linux Enterprise Server for SAP 12-SP2, SUSE Linux Enterprise Server for SAP 12-SP3, SUSE Linux Enterprise Server for SAP 15, SUSE OpenStack Cloud 7, SUSE OpenStack Cloud 8, SUSE OpenStack Cloud Crowbar 8 allows local attackers to escalate from group tomcat to root. This issue affects: SUSE Enterprise Storage 5 tomcat versions prior to 8.0.53-29.32.1. SUSE Linux Enterprise Server 12-SP2-BCL tomcat versions prior to 8.0.53-29.32.1. SUSE Linux Enterprise Server 12-SP2-LTSS tomcat versions prior to 8.0.53-29.32.1. SUSE Linux Enterprise Server 12-SP3-BCL tomcat versions prior to 8.0.53-29.32.1. SUSE Linux Enterprise Server 12-SP3-LTSS tomcat versions prior to 8.0.53-29.32.1. SUSE Linux Enterprise Server 12-SP4 tomcat versions prior to 9.0.35-3.39.1. SUSE Linux Enterprise Server 12-SP5 tomcat versions prior to 9.0.35-3.39.1. SUSE Linux Enterprise Server 15-LTSS tomcat versions prior to 9.0.35-3.57.3. SUSE Linux Enterprise Server for SAP 12-SP2 tomcat versions prior to 8.0.53-29.32.1. SUSE Linux Enterprise Server for SAP 12-SP3 tomcat versions prior to 8.0.53-29.32.1. SUSE Linux Enterprise Server for SAP 15 tomcat versions prior to 9.0.35-3.57.3. SUSE OpenStack Cloud 7 tomcat versions prior to 8.0.53-29.32.1. SUSE OpenStack Cloud 8 tomcat versions prior to 8.0.53-29.32.1. SUSE OpenStack Cloud Crowbar 8 tomcat versions prior to 8.0.53-29.32.1. Published: June 29, 2020; 5:15:11 AM -0400 |
V3.1: 7.8 HIGH V2.0: 7.2 HIGH |
CVE-2020-11996 |
A specially crafted sequence of HTTP/2 requests sent to Apache Tomcat 10.0.0-M1 to 10.0.0-M5, 9.0.0.M1 to 9.0.35 and 8.5.0 to 8.5.55 could trigger high CPU usage for several seconds. If a sufficient number of such requests were made on concurrent HTTP/2 connections, the server could become unresponsive. Published: June 26, 2020; 1:15:10 PM -0400 |
V3.1: 7.5 HIGH V2.0: 5.0 MEDIUM |
CVE-2020-9484 |
When using Apache Tomcat versions 10.0.0-M1 to 10.0.0-M4, 9.0.0.M1 to 9.0.34, 8.5.0 to 8.5.54 and 7.0.0 to 7.0.103 if a) an attacker is able to control the contents and name of a file on the server; and b) the server is configured to use the PersistenceManager with a FileStore; and c) the PersistenceManager is configured with sessionAttributeValueClassNameFilter="null" (the default unless a SecurityManager is used) or a sufficiently lax filter to allow the attacker provided object to be deserialized; and d) the attacker knows the relative file path from the storage location used by FileStore to the file the attacker has control over; then, using a specifically crafted request, the attacker will be able to trigger remote code execution via deserialization of the file under their control. Note that all of conditions a) to d) must be true for the attack to succeed. Published: May 20, 2020; 3:15:09 PM -0400 |
V3.1: 7.0 HIGH V2.0: 4.4 MEDIUM |
CVE-2020-1938 |
When using the Apache JServ Protocol (AJP), care must be taken when trusting incoming connections to Apache Tomcat. Tomcat treats AJP connections as having higher trust than, for example, a similar HTTP connection. If such connections are available to an attacker, they can be exploited in ways that may be surprising. In Apache Tomcat 9.0.0.M1 to 9.0.0.30, 8.5.0 to 8.5.50 and 7.0.0 to 7.0.99, Tomcat shipped with an AJP Connector enabled by default that listened on all configured IP addresses. It was expected (and recommended in the security guide) that this Connector would be disabled if not required. This vulnerability report identified a mechanism that allowed: - returning arbitrary files from anywhere in the web application - processing any file in the web application as a JSP Further, if the web application allowed file upload and stored those files within the web application (or the attacker was able to control the content of the web application by some other means) then this, along with the ability to process a file as a JSP, made remote code execution possible. It is important to note that mitigation is only required if an AJP port is accessible to untrusted users. Users wishing to take a defence-in-depth approach and block the vector that permits returning arbitrary files and execution as JSP may upgrade to Apache Tomcat 9.0.31, 8.5.51 or 7.0.100 or later. A number of changes were made to the default AJP Connector configuration in 9.0.31 to harden the default configuration. It is likely that users upgrading to 9.0.31, 8.5.51 or 7.0.100 or later will need to make small changes to their configurations. Published: February 24, 2020; 5:15:12 PM -0500 |
V3.1: 9.8 CRITICAL V2.0: 7.5 HIGH |