Search Results (Refine Search)

Search Parameters:
  • CPE Product Version: cpe:/a:openssl:openssl:1.0.2:beta3
There are 29 matching records.
Displaying matches 1 through 20.
Vuln ID Summary CVSS Severity
CVE-2017-3738

There is an overflow bug in the AVX2 Montgomery multiplication procedure used in exponentiation with 1024-bit moduli. No EC algorithms are affected. Analysis suggests that attacks against RSA and DSA as a result of this defect would be very difficult to perform and are not believed likely. Attacks against DH1024 are considered just feasible, because most of the work necessary to deduce information about a private key may be performed offline. The amount of resources required for such an attack would be significant. However, for an attack on TLS to be meaningful, the server would have to share the DH1024 private key among multiple clients, which is no longer an option since CVE-2016-0701. This only affects processors that support the AVX2 but not ADX extensions like Intel Haswell (4th generation). Note: The impact from this issue is similar to CVE-2017-3736, CVE-2017-3732 and CVE-2015-3193. OpenSSL version 1.0.2-1.0.2m and 1.1.0-1.1.0g are affected. Fixed in OpenSSL 1.0.2n. Due to the low severity of this issue we are not issuing a new release of OpenSSL 1.1.0 at this time. The fix will be included in OpenSSL 1.1.0h when it becomes available. The fix is also available in commit e502cc86d in the OpenSSL git repository.

Published: December 07, 2017; 11:29:00 AM -0500
V3.0: 5.9 MEDIUM
V2.0: 4.3 MEDIUM
CVE-2017-3735

While parsing an IPAddressFamily extension in an X.509 certificate, it is possible to do a one-byte overread. This would result in an incorrect text display of the certificate. This bug has been present since 2006 and is present in all versions of OpenSSL before 1.0.2m and 1.1.0g.

Published: August 28, 2017; 3:29:01 PM -0400
V3.0: 5.3 MEDIUM
V2.0: 5.0 MEDIUM
CVE-2017-3732

There is a carry propagating bug in the x86_64 Montgomery squaring procedure in OpenSSL 1.0.2 before 1.0.2k and 1.1.0 before 1.1.0d. No EC algorithms are affected. Analysis suggests that attacks against RSA and DSA as a result of this defect would be very difficult to perform and are not believed likely. Attacks against DH are considered just feasible (although very difficult) because most of the work necessary to deduce information about a private key may be performed offline. The amount of resources required for such an attack would be very significant and likely only accessible to a limited number of attackers. An attacker would additionally need online access to an unpatched system using the target private key in a scenario with persistent DH parameters and a private key that is shared between multiple clients. For example this can occur by default in OpenSSL DHE based SSL/TLS ciphersuites. Note: This issue is very similar to CVE-2015-3193 but must be treated as a separate problem.

Published: May 04, 2017; 3:29:00 PM -0400
V3.0: 5.9 MEDIUM
V2.0: 4.3 MEDIUM
CVE-2017-3731

If an SSL/TLS server or client is running on a 32-bit host, and a specific cipher is being used, then a truncated packet can cause that server or client to perform an out-of-bounds read, usually resulting in a crash. For OpenSSL 1.1.0, the crash can be triggered when using CHACHA20/POLY1305; users should upgrade to 1.1.0d. For Openssl 1.0.2, the crash can be triggered when using RC4-MD5; users who have not disabled that algorithm should update to 1.0.2k.

Published: May 04, 2017; 3:29:00 PM -0400
V3.0: 7.5 HIGH
V2.0: 5.0 MEDIUM
CVE-2016-6306

The certificate parser in OpenSSL before 1.0.1u and 1.0.2 before 1.0.2i might allow remote attackers to cause a denial of service (out-of-bounds read) via crafted certificate operations, related to s3_clnt.c and s3_srvr.c.

Published: September 26, 2016; 3:59:02 PM -0400
V3.0: 5.9 MEDIUM
V2.0: 4.3 MEDIUM
CVE-2016-6304

Multiple memory leaks in t1_lib.c in OpenSSL before 1.0.1u, 1.0.2 before 1.0.2i, and 1.1.0 before 1.1.0a allow remote attackers to cause a denial of service (memory consumption) via large OCSP Status Request extensions.

Published: September 26, 2016; 3:59:00 PM -0400
V3.0: 7.5 HIGH
V2.0: 7.8 HIGH
CVE-2016-2176

The X509_NAME_oneline function in crypto/x509/x509_obj.c in OpenSSL before 1.0.1t and 1.0.2 before 1.0.2h allows remote attackers to obtain sensitive information from process stack memory or cause a denial of service (buffer over-read) via crafted EBCDIC ASN.1 data.

Published: May 04, 2016; 9:59:06 PM -0400
V3.0: 8.2 HIGH
V2.0: 6.4 MEDIUM
CVE-2016-2109

The asn1_d2i_read_bio function in crypto/asn1/a_d2i_fp.c in the ASN.1 BIO implementation in OpenSSL before 1.0.1t and 1.0.2 before 1.0.2h allows remote attackers to cause a denial of service (memory consumption) via a short invalid encoding.

Published: May 04, 2016; 9:59:05 PM -0400
V3.0: 7.5 HIGH
V2.0: 7.8 HIGH
CVE-2016-2108

The ASN.1 implementation in OpenSSL before 1.0.1o and 1.0.2 before 1.0.2c allows remote attackers to execute arbitrary code or cause a denial of service (buffer underflow and memory corruption) via an ANY field in crafted serialized data, aka the "negative zero" issue.

Published: May 04, 2016; 9:59:04 PM -0400
V3.0: 9.8 CRITICAL
V2.0: 10.0 HIGH
CVE-2016-2107

The AES-NI implementation in OpenSSL before 1.0.1t and 1.0.2 before 1.0.2h does not consider memory allocation during a certain padding check, which allows remote attackers to obtain sensitive cleartext information via a padding-oracle attack against an AES CBC session. NOTE: this vulnerability exists because of an incorrect fix for CVE-2013-0169.

Published: May 04, 2016; 9:59:03 PM -0400
V3.0: 5.9 MEDIUM
V2.0: 2.6 LOW
CVE-2016-2106

Integer overflow in the EVP_EncryptUpdate function in crypto/evp/evp_enc.c in OpenSSL before 1.0.1t and 1.0.2 before 1.0.2h allows remote attackers to cause a denial of service (heap memory corruption) via a large amount of data.

Published: May 04, 2016; 9:59:02 PM -0400
V3.0: 7.5 HIGH
V2.0: 5.0 MEDIUM
CVE-2016-2105

Integer overflow in the EVP_EncodeUpdate function in crypto/evp/encode.c in OpenSSL before 1.0.1t and 1.0.2 before 1.0.2h allows remote attackers to cause a denial of service (heap memory corruption) via a large amount of binary data.

Published: May 04, 2016; 9:59:01 PM -0400
V3.0: 7.5 HIGH
V2.0: 5.0 MEDIUM
CVE-2016-2842

The doapr_outch function in crypto/bio/b_print.c in OpenSSL 1.0.1 before 1.0.1s and 1.0.2 before 1.0.2g does not verify that a certain memory allocation succeeds, which allows remote attackers to cause a denial of service (out-of-bounds write or memory consumption) or possibly have unspecified other impact via a long string, as demonstrated by a large amount of ASN.1 data, a different vulnerability than CVE-2016-0799.

Published: March 03, 2016; 3:59:04 PM -0500
V3.0: 9.8 CRITICAL
V2.0: 10.0 HIGH
CVE-2016-0799

The fmtstr function in crypto/bio/b_print.c in OpenSSL 1.0.1 before 1.0.1s and 1.0.2 before 1.0.2g improperly calculates string lengths, which allows remote attackers to cause a denial of service (overflow and out-of-bounds read) or possibly have unspecified other impact via a long string, as demonstrated by a large amount of ASN.1 data, a different vulnerability than CVE-2016-2842.

Published: March 03, 2016; 3:59:03 PM -0500
V3.0: 9.8 CRITICAL
V2.0: 10.0 HIGH
CVE-2016-0798

Memory leak in the SRP_VBASE_get_by_user implementation in OpenSSL 1.0.1 before 1.0.1s and 1.0.2 before 1.0.2g allows remote attackers to cause a denial of service (memory consumption) by providing an invalid username in a connection attempt, related to apps/s_server.c and crypto/srp/srp_vfy.c.

Published: March 03, 2016; 3:59:02 PM -0500
V3.0: 7.5 HIGH
V2.0: 7.8 HIGH
CVE-2016-0797

Multiple integer overflows in OpenSSL 1.0.1 before 1.0.1s and 1.0.2 before 1.0.2g allow remote attackers to cause a denial of service (heap memory corruption or NULL pointer dereference) or possibly have unspecified other impact via a long digit string that is mishandled by the (1) BN_dec2bn or (2) BN_hex2bn function, related to crypto/bn/bn.h and crypto/bn/bn_print.c.

Published: March 03, 2016; 3:59:01 PM -0500
V3.0: 7.5 HIGH
V2.0: 5.0 MEDIUM
CVE-2016-0705

Double free vulnerability in the dsa_priv_decode function in crypto/dsa/dsa_ameth.c in OpenSSL 1.0.1 before 1.0.1s and 1.0.2 before 1.0.2g allows remote attackers to cause a denial of service (memory corruption) or possibly have unspecified other impact via a malformed DSA private key.

Published: March 03, 2016; 3:59:00 PM -0500
V3.0: 9.8 CRITICAL
V2.0: 10.0 HIGH
CVE-2016-0702

The MOD_EXP_CTIME_COPY_FROM_PREBUF function in crypto/bn/bn_exp.c in OpenSSL 1.0.1 before 1.0.1s and 1.0.2 before 1.0.2g does not properly consider cache-bank access times during modular exponentiation, which makes it easier for local users to discover RSA keys by running a crafted application on the same Intel Sandy Bridge CPU core as a victim and leveraging cache-bank conflicts, aka a "CacheBleed" attack.

Published: March 03, 2016; 3:59:00 PM -0500
V3.0: 5.1 MEDIUM
V2.0: 1.9 LOW
CVE-2016-0704

An oracle protection mechanism in the get_client_master_key function in s2_srvr.c in the SSLv2 implementation in OpenSSL before 0.9.8zf, 1.0.0 before 1.0.0r, 1.0.1 before 1.0.1m, and 1.0.2 before 1.0.2a overwrites incorrect MASTER-KEY bytes during use of export cipher suites, which makes it easier for remote attackers to decrypt TLS ciphertext data by leveraging a Bleichenbacher RSA padding oracle, a related issue to CVE-2016-0800.

Published: March 02, 2016; 6:59:01 AM -0500
V3.0: 5.9 MEDIUM
V2.0: 4.3 MEDIUM
CVE-2016-0703

The get_client_master_key function in s2_srvr.c in the SSLv2 implementation in OpenSSL before 0.9.8zf, 1.0.0 before 1.0.0r, 1.0.1 before 1.0.1m, and 1.0.2 before 1.0.2a accepts a nonzero CLIENT-MASTER-KEY CLEAR-KEY-LENGTH value for an arbitrary cipher, which allows man-in-the-middle attackers to determine the MASTER-KEY value and decrypt TLS ciphertext data by leveraging a Bleichenbacher RSA padding oracle, a related issue to CVE-2016-0800.

Published: March 02, 2016; 6:59:00 AM -0500
V3.0: 5.9 MEDIUM
V2.0: 4.3 MEDIUM