Search Results (Refine Search)

Search Parameters:
  • CPE Product Version: cpe:/a:qemu:qemu:1.0
There are 164 matching records.
Displaying matches 1 through 20.
Vuln ID Summary CVSS Severity
CVE-2020-16092

In QEMU through 5.0.0, an assertion failure can occur in the network packet processing. This issue affects the e1000e and vmxnet3 network devices. A malicious guest user/process could use this flaw to abort the QEMU process on the host, resulting in a denial of service condition in net_tx_pkt_add_raw_fragment in hw/net/net_tx_pkt.c.

Published: August 11, 2020; 12:15:12 PM -0400
V3.1: 7.5 HIGH
V2.0: 5.0 MEDIUM
CVE-2020-15863

hw/net/xgmac.c in the XGMAC Ethernet controller in QEMU before 07-20-2020 has a buffer overflow. This occurs during packet transmission and affects the highbank and midway emulated machines. A guest user or process could use this flaw to crash the QEMU process on the host, resulting in a denial of service or potential privileged code execution. This was fixed in commit 5519724a13664b43e225ca05351c60b4468e4555.

Published: July 28, 2020; 12:15:12 PM -0400
V3.1: 7.9 HIGH
V2.0: 7.2 HIGH
CVE-2020-10761

An assertion failure issue was found in the Network Block Device(NBD) Server in all QEMU versions before QEMU 5.0.1. This flaw occurs when an nbd-client sends a spec-compliant request that is near the boundary of maximum permitted request length. A remote nbd-client could use this flaw to crash the qemu-nbd server resulting in a denial of service.

Published: June 09, 2020; 9:15:10 AM -0400
V3.1: 5.0 MEDIUM
V2.0: 4.0 MEDIUM
CVE-2013-4535

The virtqueue_map_sg function in hw/virtio/virtio.c in QEMU before 1.7.2 allows remote attackers to execute arbitrary files via a crafted savevm image, related to virtio-block or virtio-serial read.

Published: February 11, 2020; 11:15:12 AM -0500
V3.1: 8.8 HIGH
V2.0: 7.2 HIGH
CVE-2015-6815

The process_tx_desc function in hw/net/e1000.c in QEMU before 2.4.0.1 does not properly process transmit descriptor data when sending a network packet, which allows attackers to cause a denial of service (infinite loop and guest crash) via unspecified vectors.

Published: January 31, 2020; 5:15:11 PM -0500
V3.1: 3.5 LOW
V2.0: 2.7 LOW
CVE-2015-5745

Buffer overflow in the send_control_msg function in hw/char/virtio-serial-bus.c in QEMU before 2.4.0 allows guest users to cause a denial of service (QEMU process crash) via a crafted virtio control message.

Published: January 23, 2020; 3:15:12 PM -0500
V3.1: 6.5 MEDIUM
V2.0: 4.0 MEDIUM
CVE-2015-5278

The ne2000_receive function in hw/net/ne2000.c in QEMU before 2.4.0.1 allows attackers to cause a denial of service (infinite loop and instance crash) or possibly execute arbitrary code via vectors related to receiving packets.

Published: January 23, 2020; 3:15:11 PM -0500
V3.1: 6.5 MEDIUM
V2.0: 4.0 MEDIUM
CVE-2015-5239

Integer overflow in the VNC display driver in QEMU before 2.1.0 allows attachers to cause a denial of service (process crash) via a CLIENT_CUT_TEXT message, which triggers an infinite loop.

Published: January 23, 2020; 3:15:11 PM -0500
V3.1: 6.5 MEDIUM
V2.0: 4.0 MEDIUM
CVE-2019-12929

** DISPUTED ** The QMP guest_exec command in QEMU 4.0.0 and earlier is prone to OS command injection, which allows the attacker to achieve code execution, denial of service, or information disclosure by sending a crafted QMP command to the listening server. Note: This has been disputed as a non-issue since QEMU's -qmp interface is meant to be used by trusted users. If one is able to access this interface via a tcp socket open to the internet, then it is an insecure configuration issue.

Published: June 24, 2019; 7:15:09 AM -0400
V3.0: 9.8 CRITICAL
V2.0: 10.0 HIGH
CVE-2019-12928

** DISPUTED ** The QMP migrate command in QEMU version 4.0.0 and earlier is vulnerable to OS command injection, which allows the remote attacker to achieve code execution, denial of service, or information disclosure by sending a crafted QMP command to the listening server. Note: This has been disputed as a non-issue since QEMU's -qmp interface is meant to be used by trusted users. If one is able to access this interface via a tcp socket open to the internet, then it is an insecure configuration issue.

Published: June 24, 2019; 7:15:09 AM -0400
V3.0: 9.8 CRITICAL
V2.0: 10.0 HIGH
CVE-2019-8934

hw/ppc/spapr.c in QEMU through 3.1.0 allows Information Exposure because the hypervisor shares the /proc/device-tree/system-id and /proc/device-tree/model system attributes with a guest.

Published: March 21, 2019; 12:01:14 PM -0400
V3.0: 3.3 LOW
V2.0: 2.1 LOW
CVE-2018-20191

hw/rdma/vmw/pvrdma_main.c in QEMU does not implement a read operation (such as uar_read by analogy to uar_write), which allows attackers to cause a denial of service (NULL pointer dereference).

Published: December 20, 2018; 6:29:02 PM -0500
V3.1: 7.5 HIGH
V2.0: 5.0 MEDIUM
CVE-2018-20124

hw/rdma/rdma_backend.c in QEMU allows guest OS users to trigger out-of-bounds access via a PvrdmaSqWqe ring element with a large num_sge value.

Published: December 20, 2018; 6:29:02 PM -0500
V3.1: 5.5 MEDIUM
V2.0: 2.1 LOW
CVE-2018-20216

QEMU can have an infinite loop in hw/rdma/vmw/pvrdma_dev_ring.c because return values are not checked (and -1 is mishandled).

Published: December 20, 2018; 4:29:01 PM -0500
V3.1: 7.5 HIGH
V2.0: 5.0 MEDIUM
CVE-2018-20126

hw/rdma/vmw/pvrdma_cmd.c in QEMU allows create_cq and create_qp memory leaks because errors are mishandled.

Published: December 20, 2018; 4:29:00 PM -0500
V3.1: 5.5 MEDIUM
V2.0: 2.1 LOW
CVE-2018-20125

hw/rdma/vmw/pvrdma_cmd.c in QEMU allows attackers to cause a denial of service (NULL pointer dereference or excessive memory allocation) in create_cq_ring or create_qp_rings.

Published: December 20, 2018; 4:29:00 PM -0500
V3.1: 7.5 HIGH
V2.0: 5.0 MEDIUM
CVE-2018-20123

pvrdma_realize in hw/rdma/vmw/pvrdma_main.c in QEMU has a Memory leak after an initialisation error.

Published: December 17, 2018; 2:29:02 PM -0500
V3.1: 5.5 MEDIUM
V2.0: 2.1 LOW
CVE-2018-16872

A flaw was found in qemu Media Transfer Protocol (MTP). The code opening files in usb_mtp_get_object and usb_mtp_get_partial_object and directories in usb_mtp_object_readdir doesn't consider that the underlying filesystem may have changed since the time lstat(2) was called in usb_mtp_object_alloc, a classical TOCTTOU problem. An attacker with write access to the host filesystem shared with a guest can use this property to navigate the host filesystem in the context of the QEMU process and read any file the QEMU process has access to. Access to the filesystem may be local or via a network share protocol such as CIFS.

Published: December 13, 2018; 4:29:00 PM -0500
V3.1: 5.3 MEDIUM
V2.0: 3.5 LOW
CVE-2018-19489

v9fs_wstat in hw/9pfs/9p.c in QEMU allows guest OS users to cause a denial of service (crash) because of a race condition during file renaming.

Published: December 13, 2018; 2:29:00 PM -0500
V3.1: 4.7 MEDIUM
V2.0: 1.9 LOW
CVE-2018-19364

hw/9pfs/cofile.c and hw/9pfs/9p.c in QEMU can modify an fid path while it is being accessed by a second thread, leading to (for example) a use-after-free outcome.

Published: December 13, 2018; 2:29:00 PM -0500
V3.1: 5.5 MEDIUM
V2.0: 2.1 LOW