U.S. flag   An official website of the United States government
Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Https

Secure .gov websites use HTTPS
A lock (Dot gov) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Results (Refine Search)

Search Parameters:
  • CPE Product Version: cpe:/o:fedoraproject:fedora:29
There are 398 matching records.
Displaying matches 1 through 20.
Vuln ID Summary CVSS Severity
CVE-2020-14312

A flaw was found in the default configuration of dnsmasq, as shipped with Fedora versions prior to 31 and in all versions Red Hat Enterprise Linux, where it listens on any interface and accepts queries from addresses outside of its local subnet. In particular, the option `local-service` is not enabled. Running dnsmasq in this manner may inadvertently make it an open resolver accessible from any address on the internet. This flaw allows an attacker to conduct a Distributed Denial of Service (DDoS) against other systems.

Published: February 05, 2021; 7:15:12 PM -0500
V3.1: 5.9 MEDIUM
V2.0: 4.3 MEDIUM
CVE-2019-19010

Eval injection in the Math plugin of Limnoria (before 2019.11.09) and Supybot (through 2018-05-09) allows remote unprivileged attackers to disclose information or possibly have unspecified other impact via the calc and icalc IRC commands.

Published: November 15, 2019; 8:15:10 PM -0500
V3.1: 9.8 CRITICAL
V2.0: 7.5 HIGH
CVE-2019-14869

A flaw was found in all versions of ghostscript 9.x before 9.50, where the `.charkeys` procedure, where it did not properly secure its privileged calls, enabling scripts to bypass `-dSAFER` restrictions. An attacker could abuse this flaw by creating a specially crafted PostScript file that could escalate privileges within the Ghostscript and access files outside of restricted areas or execute commands.

Published: November 15, 2019; 7:15:10 AM -0500
V3.1: 8.8 HIGH
V2.0: 6.8 MEDIUM
CVE-2019-14847

A flaw was found in samba 4.0.0 before samba 4.9.15 and samba 4.10.x before 4.10.10. An attacker can crash AD DC LDAP server via dirsync resulting in denial of service. Privilege escalation is not possible with this issue.

Published: November 06, 2019; 5:15:10 AM -0500
V3.1: 4.9 MEDIUM
V2.0: 4.0 MEDIUM
CVE-2019-14833

A flaw was found in Samba, all versions starting samba 4.5.0 before samba 4.9.15, samba 4.10.10, samba 4.11.2, in the way it handles a user password change or a new password for a samba user. The Samba Active Directory Domain Controller can be configured to use a custom script to check for password complexity. This configuration can fail to verify password complexity when non-ASCII characters are used in the password, which could lead to weak passwords being set for samba users, making it vulnerable to dictionary attacks.

Published: November 06, 2019; 5:15:10 AM -0500
V3.1: 5.4 MEDIUM
V2.0: 4.9 MEDIUM
CVE-2019-10218

A flaw was found in the samba client, all samba versions before samba 4.11.2, 4.10.10 and 4.9.15, where a malicious server can supply a pathname to the client with separators. This could allow the client to access files and folders outside of the SMB network pathnames. An attacker could use this vulnerability to create files outside of the current working directory using the privileges of the client user.

Published: November 06, 2019; 5:15:10 AM -0500
V3.1: 6.5 MEDIUM
V2.0: 4.3 MEDIUM
CVE-2019-18425

An issue was discovered in Xen through 4.12.x allowing 32-bit PV guest OS users to gain guest OS privileges by installing and using descriptors. There is missing descriptor table limit checking in x86 PV emulation. When emulating certain PV guest operations, descriptor table accesses are performed by the emulating code. Such accesses should respect the guest specified limits, unless otherwise guaranteed to fail in such a case. Without this, emulation of 32-bit guest user mode calls through call gates would allow guest user mode to install and then use descriptors of their choice, as long as the guest kernel did not itself install an LDT. (Most OSes don't install any LDT by default). 32-bit PV guest user mode can elevate its privileges to that of the guest kernel. Xen versions from at least 3.2 onwards are affected. Only 32-bit PV guest user mode can leverage this vulnerability. HVM, PVH, as well as 64-bit PV guests cannot leverage this vulnerability. Arm systems are unaffected.

Published: October 31, 2019; 10:15:12 AM -0400
V3.1: 9.8 CRITICAL
V2.0: 9.3 HIGH
CVE-2019-18424

An issue was discovered in Xen through 4.12.x allowing attackers to gain host OS privileges via DMA in a situation where an untrusted domain has access to a physical device. This occurs because passed through PCI devices may corrupt host memory after deassignment. When a PCI device is assigned to an untrusted domain, it is possible for that domain to program the device to DMA to an arbitrary address. The IOMMU is used to protect the host from malicious DMA by making sure that the device addresses can only target memory assigned to the guest. However, when the guest domain is torn down, or the device is deassigned, the device is assigned back to dom0, thus allowing any in-flight DMA to potentially target critical host data. An untrusted domain with access to a physical device can DMA into host memory, leading to privilege escalation. Only systems where guests are given direct access to physical devices capable of DMA (PCI pass-through) are vulnerable. Systems which do not use PCI pass-through are not vulnerable.

Published: October 31, 2019; 10:15:12 AM -0400
V3.1: 6.8 MEDIUM
V2.0: 6.9 MEDIUM
CVE-2019-18423

An issue was discovered in Xen through 4.12.x allowing ARM guest OS users to cause a denial of service via a XENMEM_add_to_physmap hypercall. p2m->max_mapped_gfn is used by the functions p2m_resolve_translation_fault() and p2m_get_entry() to sanity check guest physical frame. The rest of the code in the two functions will assume that there is a valid root table and check that with BUG_ON(). The function p2m_get_root_pointer() will ignore the unused top bits of a guest physical frame. This means that the function p2m_set_entry() will alias the frame. However, p2m->max_mapped_gfn will be updated using the original frame. It would be possible to set p2m->max_mapped_gfn high enough to cover a frame that would lead p2m_get_root_pointer() to return NULL in p2m_get_entry() and p2m_resolve_translation_fault(). Additionally, the sanity check on p2m->max_mapped_gfn is off-by-one allowing "highest mapped + 1" to be considered valid. However, p2m_get_root_pointer() will return NULL. The problem could be triggered with a specially crafted hypercall XENMEM_add_to_physmap{, _batch} followed by an access to an address (via hypercall or direct access) that passes the sanity check but cause p2m_get_root_pointer() to return NULL. A malicious guest administrator may cause a hypervisor crash, resulting in a Denial of Service (DoS). Xen version 4.8 and newer are vulnerable. Only Arm systems are vulnerable. x86 systems are not affected.

Published: October 31, 2019; 10:15:11 AM -0400
V3.1: 8.8 HIGH
V2.0: 8.5 HIGH
CVE-2019-18422

An issue was discovered in Xen through 4.12.x allowing ARM guest OS users to cause a denial of service or gain privileges by leveraging the erroneous enabling of interrupts. Interrupts are unconditionally unmasked in exception handlers. When an exception occurs on an ARM system which is handled without changing processor level, some interrupts are unconditionally enabled during exception entry. So exceptions which occur when interrupts are masked will effectively unmask the interrupts. A malicious guest might contrive to arrange for critical Xen code to run with interrupts erroneously enabled. This could lead to data corruption, denial of service, or possibly even privilege escalation. However a precise attack technique has not been identified.

Published: October 31, 2019; 10:15:10 AM -0400
V3.1: 8.8 HIGH
V2.0: 8.5 HIGH
CVE-2019-18421

An issue was discovered in Xen through 4.12.x allowing x86 PV guest OS users to gain host OS privileges by leveraging race conditions in pagetable promotion and demotion operations. There are issues with restartable PV type change operations. To avoid using shadow pagetables for PV guests, Xen exposes the actual hardware pagetables to the guest. In order to prevent the guest from modifying these page tables directly, Xen keeps track of how pages are used using a type system; pages must be "promoted" before being used as a pagetable, and "demoted" before being used for any other type. Xen also allows for "recursive" promotions: i.e., an operating system promoting a page to an L4 pagetable may end up causing pages to be promoted to L3s, which may in turn cause pages to be promoted to L2s, and so on. These operations may take an arbitrarily large amount of time, and so must be re-startable. Unfortunately, making recursive pagetable promotion and demotion operations restartable is incredibly complicated, and the code contains several races which, if triggered, can cause Xen to drop or retain extra type counts, potentially allowing guests to get write access to in-use pagetables. A malicious PV guest administrator may be able to escalate their privilege to that of the host. All x86 systems with untrusted PV guests are vulnerable. HVM and PVH guests cannot exercise this vulnerability.

Published: October 31, 2019; 10:15:10 AM -0400
V3.1: 7.5 HIGH
V2.0: 7.1 HIGH
CVE-2019-18420

An issue was discovered in Xen through 4.12.x allowing x86 PV guest OS users to cause a denial of service via a VCPUOP_initialise hypercall. hypercall_create_continuation() is a variadic function which uses a printf-like format string to interpret its parameters. Error handling for a bad format character was done using BUG(), which crashes Xen. One path, via the VCPUOP_initialise hypercall, has a bad format character. The BUG() can be hit if VCPUOP_initialise executes for a sufficiently long period of time for a continuation to be created. Malicious guests may cause a hypervisor crash, resulting in a Denial of Service (DoS). Xen versions 4.6 and newer are vulnerable. Xen versions 4.5 and earlier are not vulnerable. Only x86 PV guests can exploit the vulnerability. HVM and PVH guests, and guests on ARM systems, cannot exploit the vulnerability.

Published: October 31, 2019; 10:15:10 AM -0400
V3.1: 6.5 MEDIUM
V2.0: 6.3 MEDIUM
CVE-2019-18218

cdf_read_property_info in cdf.c in file through 5.37 does not restrict the number of CDF_VECTOR elements, which allows a heap-based buffer overflow (4-byte out-of-bounds write).

Published: October 21, 2019; 1:15:10 AM -0400
V3.1: 7.8 HIGH
V2.0: 6.8 MEDIUM
CVE-2019-14287

In Sudo before 1.8.28, an attacker with access to a Runas ALL sudoer account can bypass certain policy blacklists and session PAM modules, and can cause incorrect logging, by invoking sudo with a crafted user ID. For example, this allows bypass of !root configuration, and USER= logging, for a "sudo -u \#$((0xffffffff))" command.

Published: October 17, 2019; 2:15:12 PM -0400
V3.1: 8.8 HIGH
V2.0: 9.0 HIGH
CVE-2019-3018

Vulnerability in the MySQL Server product of Oracle MySQL (component: InnoDB). Supported versions that are affected are 8.0.17 and prior. Difficult to exploit vulnerability allows high privileged attacker with network access via multiple protocols to compromise MySQL Server. Successful attacks of this vulnerability can result in unauthorized ability to cause a hang or frequently repeatable crash (complete DOS) of MySQL Server. CVSS 3.0 Base Score 4.4 (Availability impacts). CVSS Vector: (CVSS:3.0/AV:N/AC:H/PR:H/UI:N/S:U/C:N/I:N/A:H).

Published: October 16, 2019; 2:15:34 PM -0400
V3.1: 4.4 MEDIUM
V2.0: 3.5 LOW
CVE-2019-3011

Vulnerability in the MySQL Server product of Oracle MySQL (component: Server: C API). Supported versions that are affected are 8.0.17 and prior. Easily exploitable vulnerability allows low privileged attacker with network access via multiple protocols to compromise MySQL Server. Successful attacks of this vulnerability can result in unauthorized ability to cause a hang or frequently repeatable crash (complete DOS) of MySQL Server. CVSS 3.0 Base Score 6.5 (Availability impacts). CVSS Vector: (CVSS:3.0/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H).

Published: October 16, 2019; 2:15:34 PM -0400
V3.1: 6.5 MEDIUM
V2.0: 4.0 MEDIUM
CVE-2019-3009

Vulnerability in the MySQL Server product of Oracle MySQL (component: Server: Connection). Supported versions that are affected are 8.0.17 and prior. Difficult to exploit vulnerability allows high privileged attacker with network access via multiple protocols to compromise MySQL Server. Successful attacks of this vulnerability can result in unauthorized ability to cause a hang or frequently repeatable crash (complete DOS) of MySQL Server. CVSS 3.0 Base Score 4.4 (Availability impacts). CVSS Vector: (CVSS:3.0/AV:N/AC:H/PR:H/UI:N/S:U/C:N/I:N/A:H).

Published: October 16, 2019; 2:15:34 PM -0400
V3.1: 4.4 MEDIUM
V2.0: 4.0 MEDIUM
CVE-2019-3004

Vulnerability in the MySQL Server product of Oracle MySQL (component: Server: Parser). Supported versions that are affected are 8.0.17 and prior. Easily exploitable vulnerability allows low privileged attacker with network access via multiple protocols to compromise MySQL Server. Successful attacks of this vulnerability can result in unauthorized ability to cause a hang or frequently repeatable crash (complete DOS) of MySQL Server. CVSS 3.0 Base Score 6.5 (Availability impacts). CVSS Vector: (CVSS:3.0/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H).

Published: October 16, 2019; 2:15:34 PM -0400
V3.1: 6.5 MEDIUM
V2.0: 4.0 MEDIUM
CVE-2019-2998

Vulnerability in the MySQL Server product of Oracle MySQL (component: Server: Optimizer). Supported versions that are affected are 8.0.17 and prior. Easily exploitable vulnerability allows high privileged attacker with network access via multiple protocols to compromise MySQL Server. Successful attacks of this vulnerability can result in unauthorized ability to cause a hang or frequently repeatable crash (complete DOS) of MySQL Server. CVSS 3.0 Base Score 4.9 (Availability impacts). CVSS Vector: (CVSS:3.0/AV:N/AC:L/PR:H/UI:N/S:U/C:N/I:N/A:H).

Published: October 16, 2019; 2:15:33 PM -0400
V3.1: 4.9 MEDIUM
V2.0: 4.0 MEDIUM
CVE-2019-2997

Vulnerability in the MySQL Server product of Oracle MySQL (component: Server: DDL). Supported versions that are affected are 8.0.17 and prior. Easily exploitable vulnerability allows high privileged attacker with network access via multiple protocols to compromise MySQL Server. Successful attacks of this vulnerability can result in unauthorized ability to cause a hang or frequently repeatable crash (complete DOS) of MySQL Server. CVSS 3.0 Base Score 4.9 (Availability impacts). CVSS Vector: (CVSS:3.0/AV:N/AC:L/PR:H/UI:N/S:U/C:N/I:N/A:H).

Published: October 16, 2019; 2:15:33 PM -0400
V3.1: 4.9 MEDIUM
V2.0: 4.0 MEDIUM