Search Results (Refine Search)
- Results Type: Overview
- Keyword (text search): cpe:2.3:o:freebsd:freebsd:14.0:p7:*:*:*:*:*:*
- CPE Name Search: true
Vuln ID | Summary | CVSS Severity |
---|---|---|
CVE-2024-8178 |
The ctl_write_buffer and ctl_read_buffer functions allocated memory to be returned to userspace, without initializing it. Malicious software running in a guest VM that exposes virtio_scsi can exploit the vulnerabilities to achieve code execution on the host in the bhyve userspace process, which typically runs as root. Note that bhyve runs in a Capsicum sandbox, so malicious code is constrained by the capabilities available to the bhyve process. A malicious iSCSI initiator could achieve remote code execution on the iSCSI target host. Published: September 05, 2024; 1:15:13 AM -0400 |
V4.0:(not available) V3.1: 8.8 HIGH V2.0:(not available) |
CVE-2024-45063 |
The function ctl_write_buffer incorrectly set a flag which resulted in a kernel Use-After-Free when a command finished processing. Malicious software running in a guest VM that exposes virtio_scsi can exploit the vulnerabilities to achieve code execution on the host in the bhyve userspace process, which typically runs as root. Note that bhyve runs in a Capsicum sandbox, so malicious code is constrained by the capabilities available to the bhyve process. A malicious iSCSI initiator could achieve remote code execution on the iSCSI target host. Published: September 05, 2024; 1:15:13 AM -0400 |
V4.0:(not available) V3.1: 8.8 HIGH V2.0:(not available) |
CVE-2024-43110 |
The ctl_request_sense function could expose up to three bytes of the kernel heap to userspace. Malicious software running in a guest VM that exposes virtio_scsi can exploit the vulnerabilities to achieve code execution on the host in the bhyve userspace process, which typically runs as root. Note that bhyve runs in a Capsicum sandbox, so malicious code is constrained by the capabilities available to the bhyve process. A malicious iSCSI initiator could achieve remote code execution on the iSCSI target host. Published: September 05, 2024; 1:15:13 AM -0400 |
V4.0:(not available) V3.1: 8.8 HIGH V2.0:(not available) |
CVE-2024-43102 |
Concurrent removals of certain anonymous shared memory mappings by using the UMTX_SHM_DESTROY sub-request of UMTX_OP_SHM can lead to decreasing the reference count of the object representing the mapping too many times, causing it to be freed too early. A malicious code exercizing the UMTX_SHM_DESTROY sub-request in parallel can panic the kernel or enable further Use-After-Free attacks, potentially including code execution or Capsicum sandbox escape. Published: September 05, 2024; 1:15:13 AM -0400 |
V4.0:(not available) V3.1: 10.0 CRITICAL V2.0:(not available) |
CVE-2024-42416 |
The ctl_report_supported_opcodes function did not sufficiently validate a field provided by userspace, allowing an arbitrary write to a limited amount of kernel help memory. Malicious software running in a guest VM that exposes virtio_scsi can exploit the vulnerabilities to achieve code execution on the host in the bhyve userspace process, which typically runs as root. Note that bhyve runs in a Capsicum sandbox, so malicious code is constrained by the capabilities available to the bhyve process. A malicious iSCSI initiator could achieve remote code execution on the iSCSI target host. Published: September 05, 2024; 1:15:13 AM -0400 |
V4.0:(not available) V3.1: 8.8 HIGH V2.0:(not available) |
CVE-2024-32668 |
An insufficient boundary validation in the USB code could lead to an out-of-bounds write on the heap, with data controlled by the caller. A malicious, privileged software running in a guest VM can exploit the vulnerability to achieve code execution on the host in the bhyve userspace process, which typically runs as root. Note that bhyve runs in a Capsicum sandbox, so malicious code is constrained by the capabilities available to the bhyve process. Published: September 05, 2024; 1:15:13 AM -0400 |
V4.0:(not available) V3.1: 8.2 HIGH V2.0:(not available) |
CVE-2024-45287 |
A malicious value of size in a structure of packed libnv can cause an integer overflow, leading to the allocation of a smaller buffer than required for the parsed data. Published: September 05, 2024; 12:15:07 AM -0400 |
V4.0:(not available) V3.1: 7.5 HIGH V2.0:(not available) |
CVE-2024-7589 |
A signal handler in sshd(8) may call a logging function that is not async-signal-safe. The signal handler is invoked when a client does not authenticate within the LoginGraceTime seconds (120 by default). This signal handler executes in the context of the sshd(8)'s privileged code, which is not sandboxed and runs with full root privileges. This issue is another instance of the problem in CVE-2024-6387 addressed by FreeBSD-SA-24:04.openssh. The faulty code in this case is from the integration of blacklistd in OpenSSH in FreeBSD. As a result of calling functions that are not async-signal-safe in the privileged sshd(8) context, a race condition exists that a determined attacker may be able to exploit to allow an unauthenticated remote code execution as root. Published: August 12, 2024; 9:38:44 AM -0400 |
V4.0:(not available) V3.1: 8.1 HIGH V2.0:(not available) |
CVE-2024-6760 |
A logic bug in the code which disables kernel tracing for setuid programs meant that tracing was not disabled when it should have, allowing unprivileged users to trace and inspect the behavior of setuid programs. The bug may be used by an unprivileged user to read the contents of files to which they would not otherwise have access, such as the local password database. Published: August 12, 2024; 9:38:40 AM -0400 |
V4.0:(not available) V3.1: 7.5 HIGH V2.0:(not available) |
CVE-2024-6759 |
When mounting a remote filesystem using NFS, the kernel did not sanitize remotely provided filenames for the path separator character, "/". This allows readdir(3) and related functions to return filesystem entries with names containing additional path components. The lack of validation described above gives rise to a confused deputy problem. For example, a program copying files from an NFS mount could be tricked into copying from outside the intended source directory, and/or to a location outside the intended destination directory. Published: August 12, 2024; 9:38:40 AM -0400 |
V4.0:(not available) V3.1: 5.3 MEDIUM V2.0:(not available) |
CVE-2024-6387 |
A security regression (CVE-2006-5051) was discovered in OpenSSH's server (sshd). There is a race condition which can lead sshd to handle some signals in an unsafe manner. An unauthenticated, remote attacker may be able to trigger it by failing to authenticate within a set time period. Published: July 01, 2024; 9:15:06 AM -0400 |
V4.0:(not available) V3.1: 8.1 HIGH V2.0:(not available) |
CVE-2020-10566 |
grub2-bhyve, as used in FreeBSD bhyve before revision 525916 2020-02-12, mishandles font loading by a guest through a grub2.cfg file, leading to a buffer overflow. Published: March 13, 2020; 9:15:12 PM -0400 |
V4.0:(not available) V3.1: 7.8 HIGH V2.0: 4.6 MEDIUM |
CVE-2020-10565 |
grub2-bhyve, as used in FreeBSD bhyve before revision 525916 2020-02-12, does not validate the address provided as part of a memrw command (read_* or write_*) by a guest through a grub2.cfg file. This allows an untrusted guest to perform arbitrary read or write operations in the context of the grub-bhyve process, resulting in code execution as root on the host OS. Published: March 13, 2020; 9:15:12 PM -0400 |
V4.0:(not available) V3.1: 7.8 HIGH V2.0: 7.2 HIGH |
CVE-2017-13088 |
Wi-Fi Protected Access (WPA and WPA2) that support 802.11v allows reinstallation of the Integrity Group Temporal Key (IGTK) when processing a Wireless Network Management (WNM) Sleep Mode Response frame, allowing an attacker within radio range to replay frames from access points to clients. Published: October 17, 2017; 9:29:00 AM -0400 |
V4.0:(not available) V3.0: 5.3 MEDIUM V2.0: 2.9 LOW |
CVE-2017-13087 |
Wi-Fi Protected Access (WPA and WPA2) that support 802.11v allows reinstallation of the Group Temporal Key (GTK) when processing a Wireless Network Management (WNM) Sleep Mode Response frame, allowing an attacker within radio range to replay frames from access points to clients. Published: October 17, 2017; 9:29:00 AM -0400 |
V4.0:(not available) V3.0: 5.3 MEDIUM V2.0: 2.9 LOW |
CVE-2017-13086 |
Wi-Fi Protected Access (WPA and WPA2) allows reinstallation of the Tunneled Direct-Link Setup (TDLS) Peer Key (TPK) during the TDLS handshake, allowing an attacker within radio range to replay, decrypt, or spoof frames. Published: October 17, 2017; 9:29:00 AM -0400 |
V4.0:(not available) V3.0: 6.8 MEDIUM V2.0: 5.4 MEDIUM |
CVE-2017-13084 |
Wi-Fi Protected Access (WPA and WPA2) allows reinstallation of the Station-To-Station-Link (STSL) Transient Key (STK) during the PeerKey handshake, allowing an attacker within radio range to replay, decrypt, or spoof frames. Published: October 17, 2017; 9:29:00 AM -0400 |
V4.0:(not available) V3.0: 6.8 MEDIUM V2.0: 5.4 MEDIUM |
CVE-2017-13082 |
Wi-Fi Protected Access (WPA and WPA2) that supports IEEE 802.11r allows reinstallation of the Pairwise Transient Key (PTK) Temporal Key (TK) during the fast BSS transmission (FT) handshake, allowing an attacker within radio range to replay, decrypt, or spoof frames. Published: October 17, 2017; 9:29:00 AM -0400 |
V4.0:(not available) V3.0: 8.1 HIGH V2.0: 5.8 MEDIUM |
CVE-2017-13081 |
Wi-Fi Protected Access (WPA and WPA2) that supports IEEE 802.11w allows reinstallation of the Integrity Group Temporal Key (IGTK) during the group key handshake, allowing an attacker within radio range to spoof frames from access points to clients. Published: October 17, 2017; 9:29:00 AM -0400 |
V4.0:(not available) V3.0: 5.3 MEDIUM V2.0: 2.9 LOW |
CVE-2017-13080 |
Wi-Fi Protected Access (WPA and WPA2) allows reinstallation of the Group Temporal Key (GTK) during the group key handshake, allowing an attacker within radio range to replay frames from access points to clients. Published: October 17, 2017; 9:29:00 AM -0400 |
V4.0:(not available) V3.0: 5.3 MEDIUM V2.0: 2.9 LOW |