Search Results (Refine Search)

Search Parameters:
  • Results Type: Overview
  • Keyword (text search): cpe:2.3:a:isc:bind:9.0.0:rc6:*:*:*:*:*:*
There are 26 matching records.
Displaying matches 1 through 20.
Vuln ID Summary CVSS Severity
CVE-2020-8622

In BIND 9.0.0 -> 9.11.21, 9.12.0 -> 9.16.5, 9.17.0 -> 9.17.3, also affects 9.9.3-S1 -> 9.11.21-S1 of the BIND 9 Supported Preview Edition, An attacker on the network path for a TSIG-signed request, or operating the server receiving the TSIG-signed request, could send a truncated response to that request, triggering an assertion failure, causing the server to exit. Alternately, an off-path attacker would have to correctly guess when a TSIG-signed request was sent, along with other characteristics of the packet and message, and spoof a truncated response to trigger an assertion failure, causing the server to exit.

Published: August 21, 2020; 5:15:12 PM -0400
V3.1: 6.5 MEDIUM
V2.0: 4.0 MEDIUM
CVE-2020-8617

Using a specially-crafted message, an attacker may potentially cause a BIND server to reach an inconsistent state if the attacker knows (or successfully guesses) the name of a TSIG key used by the server. Since BIND, by default, configures a local session key even on servers whose configuration does not otherwise make use of it, almost all current BIND servers are vulnerable. In releases of BIND dating from March 2018 and after, an assertion check in tsig.c detects this inconsistent state and deliberately exits. Prior to the introduction of the check the server would continue operating in an inconsistent state, with potentially harmful results.

Published: May 19, 2020; 10:15:11 AM -0400
V3.1: 7.5 HIGH
V2.0: 5.0 MEDIUM
CVE-2020-8616

A malicious actor who intentionally exploits this lack of effective limitation on the number of fetches performed when processing referrals can, through the use of specially crafted referrals, cause a recursing server to issue a very large number of fetches in an attempt to process the referral. This has at least two potential effects: The performance of the recursing server can potentially be degraded by the additional work required to perform these fetches, and The attacker can exploit this behavior to use the recursing server as a reflector in a reflection attack with a high amplification factor.

Published: May 19, 2020; 10:15:11 AM -0400
V3.1: 8.6 HIGH
V2.0: 5.0 MEDIUM
CVE-2018-5741

To provide fine-grained controls over the ability to use Dynamic DNS (DDNS) to update records in a zone, BIND 9 provides a feature called update-policy. Various rules can be configured to limit the types of updates that can be performed by a client, depending on the key used when sending the update request. Unfortunately, some rule types were not initially documented, and when documentation for them was added to the Administrator Reference Manual (ARM) in change #3112, the language that was added to the ARM at that time incorrectly described the behavior of two rule types, krb5-subdomain and ms-subdomain. This incorrect documentation could mislead operators into believing that policies they had configured were more restrictive than they actually were. This affects BIND versions prior to BIND 9.11.5 and BIND 9.12.3.

Published: January 16, 2019; 3:29:01 PM -0500
V3.0: 6.5 MEDIUM
V2.0: 4.0 MEDIUM
CVE-2016-9444

named in ISC BIND 9.x before 9.9.9-P5, 9.10.x before 9.10.4-P5, and 9.11.x before 9.11.0-P2 allows remote attackers to cause a denial of service (assertion failure and daemon exit) via a crafted DS resource record in an answer.

Published: January 12, 2017; 1:59:00 AM -0500
V3.0: 7.5 HIGH
V2.0: 5.0 MEDIUM
CVE-2016-9131

named in ISC BIND 9.x before 9.9.9-P5, 9.10.x before 9.10.4-P5, and 9.11.x before 9.11.0-P2 allows remote attackers to cause a denial of service (assertion failure and daemon exit) via a malformed response to an RTYPE ANY query.

Published: January 12, 2017; 1:59:00 AM -0500
V3.1: 7.5 HIGH
V2.0: 5.0 MEDIUM
CVE-2016-8864

named in ISC BIND 9.x before 9.9.9-P4, 9.10.x before 9.10.4-P4, and 9.11.x before 9.11.0-P1 allows remote attackers to cause a denial of service (assertion failure and daemon exit) via a DNAME record in the answer section of a response to a recursive query, related to db.c and resolver.c.

Published: November 02, 2016; 1:59:00 PM -0400
V3.1: 7.5 HIGH
V2.0: 5.0 MEDIUM
CVE-2016-2775

ISC BIND 9.x before 9.9.9-P2, 9.10.x before 9.10.4-P2, and 9.11.x before 9.11.0b2, when lwresd or the named lwres option is enabled, allows remote attackers to cause a denial of service (daemon crash) via a long request that uses the lightweight resolver protocol.

Published: July 19, 2016; 6:59:00 PM -0400
V3.1: 5.9 MEDIUM
V2.0: 4.3 MEDIUM
CVE-2016-6170

ISC BIND through 9.9.9-P1, 9.10.x through 9.10.4-P1, and 9.11.x through 9.11.0b1 allows primary DNS servers to cause a denial of service (secondary DNS server crash) via a large AXFR response, and possibly allows IXFR servers to cause a denial of service (IXFR client crash) via a large IXFR response and allows remote authenticated users to cause a denial of service (primary DNS server crash) via a large UPDATE message.

Published: July 06, 2016; 10:59:05 AM -0400
V3.1: 6.5 MEDIUM
V2.0: 4.0 MEDIUM
CVE-2016-1286

named in ISC BIND 9.x before 9.9.8-P4 and 9.10.x before 9.10.3-P4 allows remote attackers to cause a denial of service (assertion failure and daemon exit) via a crafted signature record for a DNAME record, related to db.c and resolver.c.

Published: March 09, 2016; 6:59:03 PM -0500
V3.0: 8.6 HIGH
V2.0: 5.0 MEDIUM
CVE-2016-1285

named in ISC BIND 9.x before 9.9.8-P4 and 9.10.x before 9.10.3-P4 does not properly handle DNAME records when parsing fetch reply messages, which allows remote attackers to cause a denial of service (assertion failure and daemon exit) via a malformed packet to the rndc (aka control channel) interface, related to alist.c and sexpr.c.

Published: March 09, 2016; 6:59:02 PM -0500
V3.0: 6.8 MEDIUM
V2.0: 4.3 MEDIUM
CVE-2012-5166

ISC BIND 9.x before 9.7.6-P4, 9.8.x before 9.8.3-P4, 9.9.x before 9.9.1-P4, and 9.4-ESV and 9.6-ESV before 9.6-ESV-R7-P4 allows remote attackers to cause a denial of service (named daemon hang) via unspecified combinations of resource records.

Published: October 10, 2012; 5:55:00 PM -0400
V3.x:(not available)
V2.0: 7.8 HIGH
CVE-2012-4244

ISC BIND 9.x before 9.7.6-P3, 9.8.x before 9.8.3-P3, 9.9.x before 9.9.1-P3, and 9.4-ESV and 9.6-ESV before 9.6-ESV-R7-P3 allows remote attackers to cause a denial of service (assertion failure and named daemon exit) via a query for a long resource record.

Published: September 14, 2012; 6:33:21 AM -0400
V3.x:(not available)
V2.0: 7.8 HIGH
CVE-2012-1667

ISC BIND 9.x before 9.7.6-P1, 9.8.x before 9.8.3-P1, 9.9.x before 9.9.1-P1, and 9.4-ESV and 9.6-ESV before 9.6-ESV-R7-P1 does not properly handle resource records with a zero-length RDATA section, which allows remote DNS servers to cause a denial of service (daemon crash or data corruption) or obtain sensitive information from process memory via a crafted record.

Published: June 05, 2012; 12:55:01 PM -0400
V3.x:(not available)
V2.0: 8.5 HIGH
CVE-2011-4313

query.c in ISC BIND 9.0.x through 9.6.x, 9.4-ESV through 9.4-ESV-R5, 9.6-ESV through 9.6-ESV-R5, 9.7.0 through 9.7.4, 9.8.0 through 9.8.1, and 9.9.0a1 through 9.9.0b1 allows remote attackers to cause a denial of service (assertion failure and named exit) via unknown vectors related to recursive DNS queries, error logging, and the caching of an invalid record by the resolver.

Published: November 29, 2011; 12:55:02 PM -0500
V3.x:(not available)
V2.0: 5.0 MEDIUM
CVE-2011-1910

Off-by-one error in named in ISC BIND 9.x before 9.7.3-P1, 9.8.x before 9.8.0-P2, 9.4-ESV before 9.4-ESV-R4-P1, and 9.6-ESV before 9.6-ESV-R4-P1 allows remote DNS servers to cause a denial of service (assertion failure and daemon exit) via a negative response containing large RRSIG RRsets.

Published: May 31, 2011; 4:55:02 PM -0400
V3.x:(not available)
V2.0: 5.0 MEDIUM
CVE-2010-3614

named in ISC BIND 9.x before 9.6.2-P3, 9.7.x before 9.7.2-P3, 9.4-ESV before 9.4-ESV-R4, and 9.6-ESV before 9.6-ESV-R3 does not properly determine the security status of an NS RRset during a DNSKEY algorithm rollover, which might allow remote attackers to cause a denial of service (DNSSEC validation error) by triggering a rollover.

Published: December 06, 2010; 8:44:54 AM -0500
V3.x:(not available)
V2.0: 6.4 MEDIUM
CVE-2010-0382

ISC BIND 9.0.x through 9.3.x, 9.4 before 9.4.3-P5, 9.5 before 9.5.2-P2, 9.6 before 9.6.1-P3, and 9.7.0 beta handles out-of-bailiwick data accompanying a secure response without re-fetching from the original source, which allows remote attackers to have an unspecified impact via a crafted response, aka Bug 20819. NOTE: this vulnerability exists because of a regression during the fix for CVE-2009-4022.

Published: January 22, 2010; 5:00:00 PM -0500
V3.x:(not available)
V2.0: 7.6 HIGH
CVE-2010-0290

Unspecified vulnerability in ISC BIND 9.0.x through 9.3.x, 9.4 before 9.4.3-P5, 9.5 before 9.5.2-P2, 9.6 before 9.6.1-P3, and 9.7.0 beta, with DNSSEC validation enabled and checking disabled (CD), allows remote attackers to conduct DNS cache poisoning attacks by receiving a recursive client query and sending a response that contains (1) CNAME or (2) DNAME records, which do not have the intended validation before caching, aka Bug 20737. NOTE: this vulnerability exists because of an incomplete fix for CVE-2009-4022.

Published: January 22, 2010; 5:00:00 PM -0500
V3.x:(not available)
V2.0: 4.0 MEDIUM
CVE-2010-0097

ISC BIND 9.0.x through 9.3.x, 9.4 before 9.4.3-P5, 9.5 before 9.5.2-P2, 9.6 before 9.6.1-P3, and 9.7.0 beta does not properly validate DNSSEC (1) NSEC and (2) NSEC3 records, which allows remote attackers to add the Authenticated Data (AD) flag to a forged NXDOMAIN response for an existing domain.

Published: January 22, 2010; 5:00:00 PM -0500
V3.x:(not available)
V2.0: 4.3 MEDIUM