U.S. flag   An official website of the United States government
Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Https

Secure .gov websites use HTTPS
A lock (Dot gov) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Results (Refine Search)

Search Parameters:
  • Results Type: Overview
  • Keyword (text search): gradle
  • Search Type: Search All
  • CPE Name Search: false
There are 57 matching records.
Displaying matches 1 through 20.
Vuln ID Summary CVSS Severity
CVE-2023-49238

In Gradle Enterprise before 2023.1, a remote attacker may be able to gain access to a new installation (in certain installation scenarios) because of a non-unique initial system user password. Although this password must be changed upon the first login, it is possible that an attacker logs in before the legitimate administrator logs in.

Published: January 08, 2024; 9:15:44 PM -0500
V3.1: 9.8 CRITICAL
V2.0:(not available)
CVE-2023-5720

A flaw was found in Quarkus, where it does not properly sanitize artifacts created using the Gradle plugin, allowing certain build system information to remain. This flaw allows an attacker to access potentially sensitive information from the build system within the application.

Published: November 15, 2023; 9:15:07 AM -0500
V3.1: 7.5 HIGH
V2.0:(not available)
CVE-2023-42445

Gradle is a build tool with a focus on build automation and support for multi-language development. In some cases, when Gradle parses XML files, resolving XML external entities is not disabled. Combined with an Out Of Band XXE attack (OOB-XXE), just parsing XML can lead to exfiltration of local text files to a remote server. Gradle parses XML files for several purposes. Most of the time, Gradle parses XML files it generated or were already present locally. Only Ivy XML descriptors and Maven POM files can be fetched from remote repositories and parsed by Gradle. In Gradle 7.6.3 and 8.4, resolving XML external entities has been disabled for all use cases to protect against this vulnerability. Gradle will now refuse to parse XML files that have XML external entities.

Published: October 06, 2023; 10:15:12 AM -0400
V3.1: 5.3 MEDIUM
V2.0:(not available)
CVE-2023-44387

Gradle is a build tool with a focus on build automation and support for multi-language development. When copying or archiving symlinked files, Gradle resolves them but applies the permissions of the symlink itself instead of the permissions of the linked file to the resulting file. This leads to files having too much permissions given that symlinks usually are world readable and writeable. While it is unlikely this results in a direct vulnerability for the impacted build, it may open up attack vectors depending on where build artifacts end up being copied to or un-archived. In versions 7.6.3, 8.4 and above, Gradle will now properly use the permissions of the file pointed at by the symlink to set permissions of the copied or archived file.

Published: October 05, 2023; 2:15:12 PM -0400
V3.1: 6.5 MEDIUM
V2.0:(not available)
CVE-2023-39152

Always-incorrect control flow implementation in Jenkins Gradle Plugin 2.8 may result in credentials not being masked (i.e., replaced with asterisks) in the build log in some circumstances.

Published: July 26, 2023; 10:15:10 AM -0400
V3.1: 6.5 MEDIUM
V2.0:(not available)
CVE-2023-35947

Gradle is a build tool with a focus on build automation and support for multi-language development. In affected versions when unpacking Tar archives, Gradle did not check that files could be written outside of the unpack location. This could lead to important files being overwritten anywhere the Gradle process has write permissions. For a build reading Tar entries from a Tar archive, this issue could allow Gradle to disclose information from sensitive files through an arbitrary file read. To exploit this behavior, an attacker needs to either control the source of an archive already used by the build or modify the build to interact with a malicious archive. It is unlikely that this would go unnoticed. A fix has been released in Gradle 7.6.2 and 8.2 to protect against this vulnerability. Starting from these versions, Gradle will refuse to handle Tar archives which contain path traversal elements in a Tar entry name. Users are advised to upgrade. There are no known workarounds for this vulnerability. ### Impact This is a path traversal vulnerability when Gradle deals with Tar archives, often referenced as TarSlip, a variant of ZipSlip. * When unpacking Tar archives, Gradle did not check that files could be written outside of the unpack location. This could lead to important files being overwritten anywhere the Gradle process has write permissions. * For a build reading Tar entries from a Tar archive, this issue could allow Gradle to disclose information from sensitive files through an arbitrary file read. To exploit this behavior, an attacker needs to either control the source of an archive already used by the build or modify the build to interact with a malicious archive. It is unlikely that this would go unnoticed. Gradle uses Tar archives for its [Build Cache](https://docs.gradle.org/current/userguide/build_cache.html). These archives are safe when created by Gradle. But if an attacker had control of a remote build cache server, they could inject malicious build cache entries that leverage this vulnerability. This attack vector could also be exploited if a man-in-the-middle can be performed between the remote cache and the build. ### Patches A fix has been released in Gradle 7.6.2 and 8.2 to protect against this vulnerability. Starting from these versions, Gradle will refuse to handle Tar archives which contain path traversal elements in a Tar entry name. It is recommended that users upgrade to a patched version. ### Workarounds There is no workaround. * If your build deals with Tar archives that you do not fully trust, you need to inspect them to confirm they do not attempt to leverage this vulnerability. * If you use the Gradle remote build cache, make sure only trusted parties have write access to it and that connections to the remote cache are properly secured. ### References * [CWE-22: Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal')](https://cwe.mitre.org/data/definitions/22.html) * [Gradle Build Cache](https://docs.gradle.org/current/userguide/build_cache.html) * [ZipSlip](https://security.snyk.io/research/zip-slip-vulnerability)

Published: June 30, 2023; 5:15:09 PM -0400
V3.1: 8.1 HIGH
V2.0:(not available)
CVE-2023-35946

Gradle is a build tool with a focus on build automation and support for multi-language development. When Gradle writes a dependency into its dependency cache, it uses the dependency's coordinates to compute a file location. With specially crafted dependency coordinates, Gradle can be made to write files into an unintended location. The file may be written outside the dependency cache or over another file in the dependency cache. This vulnerability could be used to poison the dependency cache or overwrite important files elsewhere on the filesystem where the Gradle process has write permissions. Exploiting this vulnerability requires an attacker to have control over a dependency repository used by the Gradle build or have the ability to modify the build's configuration. It is unlikely that this would go unnoticed. A fix has been released in Gradle 7.6.2 and 8.2 to protect against this vulnerability. Gradle will refuse to cache dependencies that have path traversal elements in their dependency coordinates. It is recommended that users upgrade to a patched version. If you are unable to upgrade to Gradle 7.6.2 or 8.2, `dependency verification` will make this vulnerability more difficult to exploit.

Published: June 30, 2023; 5:15:09 PM -0400
V3.1: 5.5 MEDIUM
V2.0:(not available)
CVE-2023-30853

Gradle Build Action allows users to execute a Gradle Build in their GitHub Actions workflow. A vulnerability impacts GitHub workflows using the Gradle Build Action prior to version 2.4.2 that have executed the Gradle Build Tool with the configuration cache enabled, potentially exposing secrets configured for the repository. Secrets configured for GitHub Actions are normally passed to the Gradle Build Tool via environment variables. Due to the way that the Gradle Build Tool records these environment variables, they may be persisted into an entry in the GitHub Actions cache. This data stored in the GitHub Actions cache can be read by a GitHub Actions workflow running in an untrusted context, such as that running for a Pull Request submitted by a developer via a repository fork. This vulnerability was discovered internally through code review, and we have not seen any evidence of it being exploited in the wild. However, in addition to upgrading the Gradle Build Action, affected users should delete any potentially vulnerable cache entries and may choose to rotate any potentially affected secrets. Gradle Build Action v2.4.2 and newer no longer saves this sensitive data for later use, preventing ongoing leakage of secrets via the GitHub Actions Cache. While upgrading to the latest version of the Gradle Build Action will prevent leakage of secrets going forward, additional actions may be required due to current or previous GitHub Actions Cache entries containing this information. Current cache entries will remain vulnerable until they are forcibly deleted or they expire naturally after 7 days of not being used. Potentially vulnerable entries can be easily identified in the GitHub UI by searching for a cache entry with key matching `configuration-cache-*`. The maintainers recommend that users of the Gradle Build Action inspect their list of cache entries and manually delete any that match this pattern. While maintainers have not seen any evidence of this vulnerability being exploited, they recommend cycling any repository secrets if you cannot be certain that these have not been compromised. Compromise could occur if a user runs a GitHub Actions workflow for a pull request attempting to exploit this data. Warning signs to look for in a pull request include: - Making changes to GitHub Actions workflow files in a way that may attempt to read/extract data from the Gradle User Home or `<project-root>/.gradle` directories. - Making changes to Gradle build files or other executable files that may be invoked by a GitHub Actions workflow, in a way that may attempt to read/extract information from these locations. Some workarounds to limit the impact of this vulnerability are available: - If the Gradle project does not opt-in to using the configuration cache, then it is not vulnerable. - If the Gradle project does opt-in to using the configuration-cache by default, then the `--no-configuration-cache` command-line argument can be used to disable this feature in a GitHub Actions workflow. In any case, we recommend that users carefully inspect any pull request before approving the execution of GitHub Actions workflows. It may be prudent to require approval for all PRs from external contributors.

Published: April 28, 2023; 12:15:10 PM -0400
V3.1: 6.5 MEDIUM
V2.0:(not available)
CVE-2022-48431

In JetBrains IntelliJ IDEA before 2023.1 in some cases, Gradle and Maven projects could be imported without the “Trust Project” confirmation.

Published: March 29, 2023; 9:15:07 AM -0400
V3.1: 7.8 HIGH
V2.0:(not available)
CVE-2023-26053

Gradle is a build tool with a focus on build automation and support for multi-language development. This is a collision attack on long IDs (64bits) for PGP keys. Users of dependency verification in Gradle are vulnerable if they use long IDs for PGP keys in a `trusted-key` or `pgp` element in their dependency verification metadata file. The fix is to fail dependency verification if anything but a fingerprint is used in a trust element in dependency verification metadata. The problem is fixed in Gradle 8.0 and above. The problem is also patched in Gradle 6.9.4 and 7.6.1. As a workaround, use only full fingerprint IDs for `trusted-key` or `pgp` element in the metadata is a protection against this issue.

Published: March 01, 2023; 11:15:11 PM -0500
V3.1: 9.8 CRITICAL
V2.0:(not available)
CVE-2022-24441

The package snyk before 1.1064.0 are vulnerable to Code Injection when analyzing a project. An attacker who can convince a user to scan a malicious project can include commands in a build file such as build.gradle or gradle-wrapper.jar, which will be executed with the privileges of the application. This vulnerability may be triggered when running the the CLI tool directly, or when running a scan with one of the IDE plugins that invoke the Snyk CLI. Successful exploitation of this issue would likely require some level of social engineering - to coerce an untrusted project to be downloaded and analyzed via the Snyk CLI or opened in an IDE where a Snyk IDE plugin is installed and enabled. Additionally, if the IDE has a Trust feature then the target folder must be marked as ‘trusted’ in order to be vulnerable. **NOTE:** This issue is independent of the one reported in [CVE-2022-40764](https://security.snyk.io/vuln/SNYK-JS-SNYK-3037342), and upgrading to a fixed version for this addresses that issue as well. The affected IDE plugins and versions are: - VS Code - Affected: <=1.8.0, Fixed: 1.9.0 - IntelliJ - Affected: <=2.4.47, Fixed: 2.4.48 - Visual Studio - Affected: <=1.1.30, Fixed: 1.1.31 - Eclipse - Affected: <=v20221115.132308, Fixed: All subsequent versions - Language Server - Affected: <=v20221109.114426, Fixed: All subsequent versions

Published: November 30, 2022; 8:15:10 AM -0500
V3.1: 8.8 HIGH
V2.0:(not available)
CVE-2022-41575

A credential-exposure vulnerability in the support-bundle mechanism in Gradle Enterprise 2022.3 through 2022.3.3 allows remote attackers to access a subset of application data (e.g., cleartext credentials). This is fixed in 2022.3.3.

Published: October 21, 2022; 8:15:11 AM -0400
V3.1: 7.5 HIGH
V2.0:(not available)
CVE-2022-41574

An access-control vulnerability in Gradle Enterprise 2022.4 through 2022.3.1 allows remote attackers to prevent backups from occurring, and send emails with arbitrary text content to the configured installation-administrator contact address, via HTTP access to an accidentally exposed internal endpoint. This is fixed in 2022.3.2.

Published: October 07, 2022; 5:15:12 PM -0400
V3.1: 7.5 HIGH
V2.0:(not available)
CVE-2022-31156

Gradle is a build tool. Dependency verification is a security feature in Gradle Build Tool that was introduced to allow validation of external dependencies either through their checksum or cryptographic signatures. In versions 6.2 through 7.4.2, there are some cases in which Gradle may skip that verification and accept a dependency that would otherwise fail the build as an untrusted external artifact. This can occur in two ways. When signature verification is disabled but the verification metadata contains entries for dependencies that only have a `gpg` element but no `checksum` element. When signature verification is enabled, the verification metadata contains entries for dependencies with a `gpg` element but there is no signature file on the remote repository. In both cases, the verification will accept the dependency, skipping signature verification and not complaining that the dependency has no checksum entry. For builds that are vulnerable, there are two risks. Gradle could download a malicious binary from a repository outside your organization due to name squatting. For those still using HTTP only and not HTTPS for downloading dependencies, the build could download a malicious library instead of the expected one. Gradle 7.5 patches this issue by making sure to run checksum verification if signature verification cannot be completed, whatever the reason. Two workarounds are available: Remove all `gpg` elements from dependency verification metadata if you disable signature validation and/or avoid adding `gpg` entries for dependencies that do not have signature files.

Published: July 14, 2022; 4:15:08 PM -0400
V3.1: 4.4 MEDIUM
V2.0:(not available)
CVE-2022-30587

Gradle Enterprise through 2022.2.2 has Incorrect Access Control that leads to information disclosure.

Published: June 06, 2022; 4:15:07 PM -0400
V3.1: 7.5 HIGH
V2.0: 5.0 MEDIUM
CVE-2022-30586

Gradle Enterprise through 2022.2.2 has Incorrect Access Control that leads to code execution.

Published: June 06, 2022; 3:15:09 PM -0400
V3.1: 7.2 HIGH
V2.0: 6.5 MEDIUM
CVE-2022-27919

Gradle Enterprise before 2022.1 allows remote code execution if the installation process did not specify an initial configuration file. The configuration allows certain anonymous access to administration and an API.

Published: March 25, 2022; 4:15:09 PM -0400
V3.1: 9.8 CRITICAL
V2.0: 7.5 HIGH
CVE-2022-25364

In Gradle Enterprise before 2021.4.2, the default built-in build cache configuration allowed anonymous write access. If this was not manually changed, a malicious actor with network access to the build cache could potentially populate it with manipulated entries that execute malicious code as part of a build. As of 2021.4.2, the built-in build cache is inaccessible-by-default, requiring explicit configuration of its access-control settings before it can be used. (Remote build cache nodes are unaffected as they are inaccessible-by-default.)

Published: March 17, 2022; 1:15:07 PM -0400
V3.1: 8.1 HIGH
V2.0: 9.3 HIGH
CVE-2022-27225

Gradle Enterprise before 2021.4.3 relies on cleartext data transmission in some situations. It uses Keycloak for identity management services. During the sign-in process, Keycloak sets browser cookies that effectively provide remember-me functionality. For backwards compatibility with older Safari versions, Keycloak sets a duplicate of the cookie without the Secure attribute, which allows the cookie to be sent when accessing the location that cookie is set for via HTTP. This creates the potential for an attacker (with the ability to impersonate the Gradle Enterprise host) to capture the login session of a user by having them click an http:// link to the server, despite the real server requiring HTTPS.

Published: March 15, 2022; 9:15:08 PM -0400
V3.1: 6.5 MEDIUM
V2.0: 4.3 MEDIUM
CVE-2022-24329

In JetBrains Kotlin before 1.6.0, it was not possible to lock dependencies for Multiplatform Gradle Projects.

Published: February 25, 2022; 10:15:09 AM -0500
V3.1: 5.3 MEDIUM
V2.0: 5.0 MEDIUM