U.S. flag   An official website of the United States government
Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Https

Secure .gov websites use HTTPS
A lock (Dot gov) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Results (Refine Search)

Search Parameters:
  • Keyword (text search): cpe:2.3:o:linux:linux_kernel:2.0.9:*:*:*:*:*:*:*
  • CPE Name Search: true
There are 2,801 matching records.
Displaying matches 201 through 220.
Vuln ID Summary CVSS Severity
CVE-2024-46776

In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Run DC_LOG_DC after checking link->link_enc [WHAT] The DC_LOG_DC should be run after link->link_enc is checked, not before. This fixes 1 REVERSE_INULL issue reported by Coverity.

Published: September 18, 2024; 4:15:05 AM -0400
V4.0:(not available)
V3.1: 5.5 MEDIUM
V2.0:(not available)
CVE-2024-46775

In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Validate function returns [WHAT & HOW] Function return values must be checked before data can be used in subsequent functions. This fixes 4 CHECKED_RETURN issues reported by Coverity.

Published: September 18, 2024; 4:15:05 AM -0400
V4.0:(not available)
V3.1: 5.5 MEDIUM
V2.0:(not available)
CVE-2024-46774

In the Linux kernel, the following vulnerability has been resolved: powerpc/rtas: Prevent Spectre v1 gadget construction in sys_rtas() Smatch warns: arch/powerpc/kernel/rtas.c:1932 __do_sys_rtas() warn: potential spectre issue 'args.args' [r] (local cap) The 'nargs' and 'nret' locals come directly from a user-supplied buffer and are used as indexes into a small stack-based array and as inputs to copy_to_user() after they are subject to bounds checks. Use array_index_nospec() after the bounds checks to clamp these values for speculative execution.

Published: September 18, 2024; 4:15:05 AM -0400
V4.0:(not available)
V3.1: 7.1 HIGH
V2.0:(not available)
CVE-2024-46773

In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Check denominator pbn_div before used [WHAT & HOW] A denominator cannot be 0, and is checked before used. This fixes 1 DIVIDE_BY_ZERO issue reported by Coverity.

Published: September 18, 2024; 4:15:05 AM -0400
V4.0:(not available)
V3.1: 5.5 MEDIUM
V2.0:(not available)
CVE-2024-46772

In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Check denominator crb_pipes before used [WHAT & HOW] A denominator cannot be 0, and is checked before used. This fixes 2 DIVIDE_BY_ZERO issues reported by Coverity.

Published: September 18, 2024; 4:15:05 AM -0400
V4.0:(not available)
V3.1: 5.5 MEDIUM
V2.0:(not available)
CVE-2024-46762

In the Linux kernel, the following vulnerability has been resolved: xen: privcmd: Fix possible access to a freed kirqfd instance Nothing prevents simultaneous ioctl calls to privcmd_irqfd_assign() and privcmd_irqfd_deassign(). If that happens, it is possible that a kirqfd created and added to the irqfds_list by privcmd_irqfd_assign() may get removed by another thread executing privcmd_irqfd_deassign(), while the former is still using it after dropping the locks. This can lead to a situation where an already freed kirqfd instance may be accessed and cause kernel oops. Use SRCU locking to prevent the same, as is done for the KVM implementation for irqfds.

Published: September 18, 2024; 4:15:04 AM -0400
V4.0:(not available)
V3.1: 5.5 MEDIUM
V2.0:(not available)
CVE-2024-46761

In the Linux kernel, the following vulnerability has been resolved: pci/hotplug/pnv_php: Fix hotplug driver crash on Powernv The hotplug driver for powerpc (pci/hotplug/pnv_php.c) causes a kernel crash when we try to hot-unplug/disable the PCIe switch/bridge from the PHB. The crash occurs because although the MSI data structure has been released during disable/hot-unplug path and it has been assigned with NULL, still during unregistration the code was again trying to explicitly disable the MSI which causes the NULL pointer dereference and kernel crash. The patch fixes the check during unregistration path to prevent invoking pci_disable_msi/msix() since its data structure is already freed.

Published: September 18, 2024; 4:15:04 AM -0400
V4.0:(not available)
V3.1: 5.5 MEDIUM
V2.0:(not available)
CVE-2024-46760

In the Linux kernel, the following vulnerability has been resolved: wifi: rtw88: usb: schedule rx work after everything is set up Right now it's possible to hit NULL pointer dereference in rtw_rx_fill_rx_status on hw object and/or its fields because initialization routine can start getting USB replies before rtw_dev is fully setup. The stack trace looks like this: rtw_rx_fill_rx_status rtw8821c_query_rx_desc rtw_usb_rx_handler ... queue_work rtw_usb_read_port_complete ... usb_submit_urb rtw_usb_rx_resubmit rtw_usb_init_rx rtw_usb_probe So while we do the async stuff rtw_usb_probe continues and calls rtw_register_hw, which does all kinds of initialization (e.g. via ieee80211_register_hw) that rtw_rx_fill_rx_status relies on. Fix this by moving the first usb_submit_urb after everything is set up. For me, this bug manifested as: [ 8.893177] rtw_8821cu 1-1:1.2: band wrong, packet dropped [ 8.910904] rtw_8821cu 1-1:1.2: hw->conf.chandef.chan NULL in rtw_rx_fill_rx_status because I'm using Larry's backport of rtw88 driver with the NULL checks in rtw_rx_fill_rx_status.

Published: September 18, 2024; 4:15:04 AM -0400
V4.0:(not available)
V3.1: 5.5 MEDIUM
V2.0:(not available)
CVE-2024-46759

In the Linux kernel, the following vulnerability has been resolved: hwmon: (adc128d818) Fix underflows seen when writing limit attributes DIV_ROUND_CLOSEST() after kstrtol() results in an underflow if a large negative number such as -9223372036854775808 is provided by the user. Fix it by reordering clamp_val() and DIV_ROUND_CLOSEST() operations.

Published: September 18, 2024; 4:15:04 AM -0400
V4.0:(not available)
V3.1: 7.8 HIGH
V2.0:(not available)
CVE-2024-46758

In the Linux kernel, the following vulnerability has been resolved: hwmon: (lm95234) Fix underflows seen when writing limit attributes DIV_ROUND_CLOSEST() after kstrtol() results in an underflow if a large negative number such as -9223372036854775808 is provided by the user. Fix it by reordering clamp_val() and DIV_ROUND_CLOSEST() operations.

Published: September 18, 2024; 4:15:04 AM -0400
V4.0:(not available)
V3.1: 7.8 HIGH
V2.0:(not available)
CVE-2024-46757

In the Linux kernel, the following vulnerability has been resolved: hwmon: (nct6775-core) Fix underflows seen when writing limit attributes DIV_ROUND_CLOSEST() after kstrtol() results in an underflow if a large negative number such as -9223372036854775808 is provided by the user. Fix it by reordering clamp_val() and DIV_ROUND_CLOSEST() operations.

Published: September 18, 2024; 4:15:04 AM -0400
V4.0:(not available)
V3.1: 7.8 HIGH
V2.0:(not available)
CVE-2024-46756

In the Linux kernel, the following vulnerability has been resolved: hwmon: (w83627ehf) Fix underflows seen when writing limit attributes DIV_ROUND_CLOSEST() after kstrtol() results in an underflow if a large negative number such as -9223372036854775808 is provided by the user. Fix it by reordering clamp_val() and DIV_ROUND_CLOSEST() operations.

Published: September 18, 2024; 4:15:04 AM -0400
V4.0:(not available)
V3.1: 7.8 HIGH
V2.0:(not available)
CVE-2024-46755

In the Linux kernel, the following vulnerability has been resolved: wifi: mwifiex: Do not return unused priv in mwifiex_get_priv_by_id() mwifiex_get_priv_by_id() returns the priv pointer corresponding to the bss_num and bss_type, but without checking if the priv is actually currently in use. Unused priv pointers do not have a wiphy attached to them which can lead to NULL pointer dereferences further down the callstack. Fix this by returning only used priv pointers which have priv->bss_mode set to something else than NL80211_IFTYPE_UNSPECIFIED. Said NULL pointer dereference happened when an Accesspoint was started with wpa_supplicant -i mlan0 with this config: network={ ssid="somessid" mode=2 frequency=2412 key_mgmt=WPA-PSK WPA-PSK-SHA256 proto=RSN group=CCMP pairwise=CCMP psk="12345678" } When waiting for the AP to be established, interrupting wpa_supplicant with <ctrl-c> and starting it again this happens: | Unable to handle kernel NULL pointer dereference at virtual address 0000000000000140 | Mem abort info: | ESR = 0x0000000096000004 | EC = 0x25: DABT (current EL), IL = 32 bits | SET = 0, FnV = 0 | EA = 0, S1PTW = 0 | FSC = 0x04: level 0 translation fault | Data abort info: | ISV = 0, ISS = 0x00000004, ISS2 = 0x00000000 | CM = 0, WnR = 0, TnD = 0, TagAccess = 0 | GCS = 0, Overlay = 0, DirtyBit = 0, Xs = 0 | user pgtable: 4k pages, 48-bit VAs, pgdp=0000000046d96000 | [0000000000000140] pgd=0000000000000000, p4d=0000000000000000 | Internal error: Oops: 0000000096000004 [#1] PREEMPT SMP | Modules linked in: caam_jr caamhash_desc spidev caamalg_desc crypto_engine authenc libdes mwifiex_sdio +mwifiex crct10dif_ce cdc_acm onboard_usb_hub fsl_imx8_ddr_perf imx8m_ddrc rtc_ds1307 lm75 rtc_snvs +imx_sdma caam imx8mm_thermal spi_imx error imx_cpufreq_dt fuse ip_tables x_tables ipv6 | CPU: 0 PID: 8 Comm: kworker/0:1 Not tainted 6.9.0-00007-g937242013fce-dirty #18 | Hardware name: somemachine (DT) | Workqueue: events sdio_irq_work | pstate: 00000005 (nzcv daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--) | pc : mwifiex_get_cfp+0xd8/0x15c [mwifiex] | lr : mwifiex_get_cfp+0x34/0x15c [mwifiex] | sp : ffff8000818b3a70 | x29: ffff8000818b3a70 x28: ffff000006bfd8a5 x27: 0000000000000004 | x26: 000000000000002c x25: 0000000000001511 x24: 0000000002e86bc9 | x23: ffff000006bfd996 x22: 0000000000000004 x21: ffff000007bec000 | x20: 000000000000002c x19: 0000000000000000 x18: 0000000000000000 | x17: 000000040044ffff x16: 00500072b5503510 x15: ccc283740681e517 | x14: 0201000101006d15 x13: 0000000002e8ff43 x12: 002c01000000ffb1 | x11: 0100000000000000 x10: 02e8ff43002c0100 x9 : 0000ffb100100157 | x8 : ffff000003d20000 x7 : 00000000000002f1 x6 : 00000000ffffe124 | x5 : 0000000000000001 x4 : 0000000000000003 x3 : 0000000000000000 | x2 : 0000000000000000 x1 : 0001000000011001 x0 : 0000000000000000 | Call trace: | mwifiex_get_cfp+0xd8/0x15c [mwifiex] | mwifiex_parse_single_response_buf+0x1d0/0x504 [mwifiex] | mwifiex_handle_event_ext_scan_report+0x19c/0x2f8 [mwifiex] | mwifiex_process_sta_event+0x298/0xf0c [mwifiex] | mwifiex_process_event+0x110/0x238 [mwifiex] | mwifiex_main_process+0x428/0xa44 [mwifiex] | mwifiex_sdio_interrupt+0x64/0x12c [mwifiex_sdio] | process_sdio_pending_irqs+0x64/0x1b8 | sdio_irq_work+0x4c/0x7c | process_one_work+0x148/0x2a0 | worker_thread+0x2fc/0x40c | kthread+0x110/0x114 | ret_from_fork+0x10/0x20 | Code: a94153f3 a8c37bfd d50323bf d65f03c0 (f940a000) | ---[ end trace 0000000000000000 ]---

Published: September 18, 2024; 4:15:04 AM -0400
V4.0:(not available)
V3.1: 5.5 MEDIUM
V2.0:(not available)
CVE-2024-46751

In the Linux kernel, the following vulnerability has been resolved: btrfs: don't BUG_ON() when 0 reference count at btrfs_lookup_extent_info() Instead of doing a BUG_ON() handle the error by returning -EUCLEAN, aborting the transaction and logging an error message.

Published: September 18, 2024; 4:15:04 AM -0400
V4.0:(not available)
V3.1: 5.5 MEDIUM
V2.0:(not available)
CVE-2024-46750

In the Linux kernel, the following vulnerability has been resolved: PCI: Add missing bridge lock to pci_bus_lock() One of the true positives that the cfg_access_lock lockdep effort identified is this sequence: WARNING: CPU: 14 PID: 1 at drivers/pci/pci.c:4886 pci_bridge_secondary_bus_reset+0x5d/0x70 RIP: 0010:pci_bridge_secondary_bus_reset+0x5d/0x70 Call Trace: <TASK> ? __warn+0x8c/0x190 ? pci_bridge_secondary_bus_reset+0x5d/0x70 ? report_bug+0x1f8/0x200 ? handle_bug+0x3c/0x70 ? exc_invalid_op+0x18/0x70 ? asm_exc_invalid_op+0x1a/0x20 ? pci_bridge_secondary_bus_reset+0x5d/0x70 pci_reset_bus+0x1d8/0x270 vmd_probe+0x778/0xa10 pci_device_probe+0x95/0x120 Where pci_reset_bus() users are triggering unlocked secondary bus resets. Ironically pci_bus_reset(), several calls down from pci_reset_bus(), uses pci_bus_lock() before issuing the reset which locks everything *but* the bridge itself. For the same motivation as adding: bridge = pci_upstream_bridge(dev); if (bridge) pci_dev_lock(bridge); to pci_reset_function() for the "bus" and "cxl_bus" reset cases, add pci_dev_lock() for @bus->self to pci_bus_lock(). [bhelgaas: squash in recursive locking deadlock fix from Keith Busch: https://lore.kernel.org/r/20240711193650.701834-1-kbusch@meta.com]

Published: September 18, 2024; 4:15:03 AM -0400
V4.0:(not available)
V3.1: 5.5 MEDIUM
V2.0:(not available)
CVE-2024-46749

In the Linux kernel, the following vulnerability has been resolved: Bluetooth: btnxpuart: Fix Null pointer dereference in btnxpuart_flush() This adds a check before freeing the rx->skb in flush and close functions to handle the kernel crash seen while removing driver after FW download fails or before FW download completes. dmesg log: [ 54.634586] Unable to handle kernel NULL pointer dereference at virtual address 0000000000000080 [ 54.643398] Mem abort info: [ 54.646204] ESR = 0x0000000096000004 [ 54.649964] EC = 0x25: DABT (current EL), IL = 32 bits [ 54.655286] SET = 0, FnV = 0 [ 54.658348] EA = 0, S1PTW = 0 [ 54.661498] FSC = 0x04: level 0 translation fault [ 54.666391] Data abort info: [ 54.669273] ISV = 0, ISS = 0x00000004, ISS2 = 0x00000000 [ 54.674768] CM = 0, WnR = 0, TnD = 0, TagAccess = 0 [ 54.674771] GCS = 0, Overlay = 0, DirtyBit = 0, Xs = 0 [ 54.674775] user pgtable: 4k pages, 48-bit VAs, pgdp=0000000048860000 [ 54.674780] [0000000000000080] pgd=0000000000000000, p4d=0000000000000000 [ 54.703880] Internal error: Oops: 0000000096000004 [#1] PREEMPT SMP [ 54.710152] Modules linked in: btnxpuart(-) overlay fsl_jr_uio caam_jr caamkeyblob_desc caamhash_desc caamalg_desc crypto_engine authenc libdes crct10dif_ce polyval_ce polyval_generic snd_soc_imx_spdif snd_soc_imx_card snd_soc_ak5558 snd_soc_ak4458 caam secvio error snd_soc_fsl_micfil snd_soc_fsl_spdif snd_soc_fsl_sai snd_soc_fsl_utils imx_pcm_dma gpio_ir_recv rc_core sch_fq_codel fuse [ 54.744357] CPU: 3 PID: 72 Comm: kworker/u9:0 Not tainted 6.6.3-otbr-g128004619037 #2 [ 54.744364] Hardware name: FSL i.MX8MM EVK board (DT) [ 54.744368] Workqueue: hci0 hci_power_on [ 54.757244] pstate: 60000005 (nZCv daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--) [ 54.757249] pc : kfree_skb_reason+0x18/0xb0 [ 54.772299] lr : btnxpuart_flush+0x40/0x58 [btnxpuart] [ 54.782921] sp : ffff8000805ebca0 [ 54.782923] x29: ffff8000805ebca0 x28: ffffa5c6cf1869c0 x27: ffffa5c6cf186000 [ 54.782931] x26: ffff377b84852400 x25: ffff377b848523c0 x24: ffff377b845e7230 [ 54.782938] x23: ffffa5c6ce8dbe08 x22: ffffa5c6ceb65410 x21: 00000000ffffff92 [ 54.782945] x20: ffffa5c6ce8dbe98 x19: ffffffffffffffac x18: ffffffffffffffff [ 54.807651] x17: 0000000000000000 x16: ffffa5c6ce2824ec x15: ffff8001005eb857 [ 54.821917] x14: 0000000000000000 x13: ffffa5c6cf1a02e0 x12: 0000000000000642 [ 54.821924] x11: 0000000000000040 x10: ffffa5c6cf19d690 x9 : ffffa5c6cf19d688 [ 54.821931] x8 : ffff377b86000028 x7 : 0000000000000000 x6 : 0000000000000000 [ 54.821938] x5 : ffff377b86000000 x4 : 0000000000000000 x3 : 0000000000000000 [ 54.843331] x2 : 0000000000000000 x1 : 0000000000000002 x0 : ffffffffffffffac [ 54.857599] Call trace: [ 54.857601] kfree_skb_reason+0x18/0xb0 [ 54.863878] btnxpuart_flush+0x40/0x58 [btnxpuart] [ 54.863888] hci_dev_open_sync+0x3a8/0xa04 [ 54.872773] hci_power_on+0x54/0x2e4 [ 54.881832] process_one_work+0x138/0x260 [ 54.881842] worker_thread+0x32c/0x438 [ 54.881847] kthread+0x118/0x11c [ 54.881853] ret_from_fork+0x10/0x20 [ 54.896406] Code: a9be7bfd 910003fd f9000bf3 aa0003f3 (b940d400) [ 54.896410] ---[ end trace 0000000000000000 ]---

Published: September 18, 2024; 4:15:03 AM -0400
V4.0:(not available)
V3.1: 5.5 MEDIUM
V2.0:(not available)
CVE-2024-46747

In the Linux kernel, the following vulnerability has been resolved: HID: cougar: fix slab-out-of-bounds Read in cougar_report_fixup report_fixup for the Cougar 500k Gaming Keyboard was not verifying that the report descriptor size was correct before accessing it

Published: September 18, 2024; 4:15:03 AM -0400
V4.0:(not available)
V3.1: 7.1 HIGH
V2.0:(not available)
CVE-2024-46746

In the Linux kernel, the following vulnerability has been resolved: HID: amd_sfh: free driver_data after destroying hid device HID driver callbacks aren't called anymore once hid_destroy_device() has been called. Hence, hid driver_data should be freed only after the hid_destroy_device() function returned as driver_data is used in several callbacks. I observed a crash with kernel 6.10.0 on my T14s Gen 3, after enabling KASAN to debug memory allocation, I got this output: [ 13.050438] ================================================================== [ 13.054060] BUG: KASAN: slab-use-after-free in amd_sfh_get_report+0x3ec/0x530 [amd_sfh] [ 13.054809] psmouse serio1: trackpoint: Synaptics TrackPoint firmware: 0x02, buttons: 3/3 [ 13.056432] Read of size 8 at addr ffff88813152f408 by task (udev-worker)/479 [ 13.060970] CPU: 5 PID: 479 Comm: (udev-worker) Not tainted 6.10.0-arch1-2 #1 893bb55d7f0073f25c46adbb49eb3785fefd74b0 [ 13.063978] Hardware name: LENOVO 21CQCTO1WW/21CQCTO1WW, BIOS R22ET70W (1.40 ) 03/21/2024 [ 13.067860] Call Trace: [ 13.069383] input: TPPS/2 Synaptics TrackPoint as /devices/platform/i8042/serio1/input/input8 [ 13.071486] <TASK> [ 13.071492] dump_stack_lvl+0x5d/0x80 [ 13.074870] snd_hda_intel 0000:33:00.6: enabling device (0000 -> 0002) [ 13.078296] ? amd_sfh_get_report+0x3ec/0x530 [amd_sfh 05f43221435b5205f734cd9da29399130f398a38] [ 13.082199] print_report+0x174/0x505 [ 13.085776] ? __pfx__raw_spin_lock_irqsave+0x10/0x10 [ 13.089367] ? srso_alias_return_thunk+0x5/0xfbef5 [ 13.093255] ? amd_sfh_get_report+0x3ec/0x530 [amd_sfh 05f43221435b5205f734cd9da29399130f398a38] [ 13.097464] kasan_report+0xc8/0x150 [ 13.101461] ? amd_sfh_get_report+0x3ec/0x530 [amd_sfh 05f43221435b5205f734cd9da29399130f398a38] [ 13.105802] amd_sfh_get_report+0x3ec/0x530 [amd_sfh 05f43221435b5205f734cd9da29399130f398a38] [ 13.110303] amdtp_hid_request+0xb8/0x110 [amd_sfh 05f43221435b5205f734cd9da29399130f398a38] [ 13.114879] ? srso_alias_return_thunk+0x5/0xfbef5 [ 13.119450] sensor_hub_get_feature+0x1d3/0x540 [hid_sensor_hub 3f13be3016ff415bea03008d45d99da837ee3082] [ 13.124097] hid_sensor_parse_common_attributes+0x4d0/0xad0 [hid_sensor_iio_common c3a5cbe93969c28b122609768bbe23efe52eb8f5] [ 13.127404] ? srso_alias_return_thunk+0x5/0xfbef5 [ 13.131925] ? __pfx_hid_sensor_parse_common_attributes+0x10/0x10 [hid_sensor_iio_common c3a5cbe93969c28b122609768bbe23efe52eb8f5] [ 13.136455] ? _raw_spin_lock_irqsave+0x96/0xf0 [ 13.140197] ? __pfx__raw_spin_lock_irqsave+0x10/0x10 [ 13.143602] ? devm_iio_device_alloc+0x34/0x50 [industrialio 3d261d5e5765625d2b052be40e526d62b1d2123b] [ 13.147234] ? srso_alias_return_thunk+0x5/0xfbef5 [ 13.150446] ? __devm_add_action+0x167/0x1d0 [ 13.155061] hid_gyro_3d_probe+0x120/0x7f0 [hid_sensor_gyro_3d 63da36a143b775846ab2dbb86c343b401b5e3172] [ 13.158581] ? srso_alias_return_thunk+0x5/0xfbef5 [ 13.161814] platform_probe+0xa2/0x150 [ 13.165029] really_probe+0x1e3/0x8a0 [ 13.168243] __driver_probe_device+0x18c/0x370 [ 13.171500] driver_probe_device+0x4a/0x120 [ 13.175000] __driver_attach+0x190/0x4a0 [ 13.178521] ? __pfx___driver_attach+0x10/0x10 [ 13.181771] bus_for_each_dev+0x106/0x180 [ 13.185033] ? __pfx__raw_spin_lock+0x10/0x10 [ 13.188229] ? __pfx_bus_for_each_dev+0x10/0x10 [ 13.191446] ? srso_alias_return_thunk+0x5/0xfbef5 [ 13.194382] bus_add_driver+0x29e/0x4d0 [ 13.197328] driver_register+0x1a5/0x360 [ 13.200283] ? __pfx_hid_gyro_3d_platform_driver_init+0x10/0x10 [hid_sensor_gyro_3d 63da36a143b775846ab2dbb86c343b401b5e3172] [ 13.203362] do_one_initcall+0xa7/0x380 [ 13.206432] ? __pfx_do_one_initcall+0x10/0x10 [ 13.210175] ? srso_alias_return_thunk+0x5/0xfbef5 [ 13.213211] ? kasan_unpoison+0x44/0x70 [ 13.216688] do_init_module+0x238/0x750 [ 13.2196 ---truncated---

Published: September 18, 2024; 4:15:03 AM -0400
V4.0:(not available)
V3.1: 7.8 HIGH
V2.0:(not available)
CVE-2024-46744

In the Linux kernel, the following vulnerability has been resolved: Squashfs: sanity check symbolic link size Syzkiller reports a "KMSAN: uninit-value in pick_link" bug. This is caused by an uninitialised page, which is ultimately caused by a corrupted symbolic link size read from disk. The reason why the corrupted symlink size causes an uninitialised page is due to the following sequence of events: 1. squashfs_read_inode() is called to read the symbolic link from disk. This assigns the corrupted value 3875536935 to inode->i_size. 2. Later squashfs_symlink_read_folio() is called, which assigns this corrupted value to the length variable, which being a signed int, overflows producing a negative number. 3. The following loop that fills in the page contents checks that the copied bytes is less than length, which being negative means the loop is skipped, producing an uninitialised page. This patch adds a sanity check which checks that the symbolic link size is not larger than expected. -- V2: fix spelling mistake.

Published: September 18, 2024; 4:15:03 AM -0400
V4.0:(not available)
V3.1: 7.8 HIGH
V2.0:(not available)
CVE-2024-46743

In the Linux kernel, the following vulnerability has been resolved: of/irq: Prevent device address out-of-bounds read in interrupt map walk When of_irq_parse_raw() is invoked with a device address smaller than the interrupt parent node (from #address-cells property), KASAN detects the following out-of-bounds read when populating the initial match table (dyndbg="func of_irq_parse_* +p"): OF: of_irq_parse_one: dev=/soc@0/picasso/watchdog, index=0 OF: parent=/soc@0/pci@878000000000/gpio0@17,0, intsize=2 OF: intspec=4 OF: of_irq_parse_raw: ipar=/soc@0/pci@878000000000/gpio0@17,0, size=2 OF: -> addrsize=3 ================================================================== BUG: KASAN: slab-out-of-bounds in of_irq_parse_raw+0x2b8/0x8d0 Read of size 4 at addr ffffff81beca5608 by task bash/764 CPU: 1 PID: 764 Comm: bash Tainted: G O 6.1.67-484c613561-nokia_sm_arm64 #1 Hardware name: Unknown Unknown Product/Unknown Product, BIOS 2023.01-12.24.03-dirty 01/01/2023 Call trace: dump_backtrace+0xdc/0x130 show_stack+0x1c/0x30 dump_stack_lvl+0x6c/0x84 print_report+0x150/0x448 kasan_report+0x98/0x140 __asan_load4+0x78/0xa0 of_irq_parse_raw+0x2b8/0x8d0 of_irq_parse_one+0x24c/0x270 parse_interrupts+0xc0/0x120 of_fwnode_add_links+0x100/0x2d0 fw_devlink_parse_fwtree+0x64/0xc0 device_add+0xb38/0xc30 of_device_add+0x64/0x90 of_platform_device_create_pdata+0xd0/0x170 of_platform_bus_create+0x244/0x600 of_platform_notify+0x1b0/0x254 blocking_notifier_call_chain+0x9c/0xd0 __of_changeset_entry_notify+0x1b8/0x230 __of_changeset_apply_notify+0x54/0xe4 of_overlay_fdt_apply+0xc04/0xd94 ... The buggy address belongs to the object at ffffff81beca5600 which belongs to the cache kmalloc-128 of size 128 The buggy address is located 8 bytes inside of 128-byte region [ffffff81beca5600, ffffff81beca5680) The buggy address belongs to the physical page: page:00000000230d3d03 refcount:1 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0x1beca4 head:00000000230d3d03 order:1 compound_mapcount:0 compound_pincount:0 flags: 0x8000000000010200(slab|head|zone=2) raw: 8000000000010200 0000000000000000 dead000000000122 ffffff810000c300 raw: 0000000000000000 0000000000200020 00000001ffffffff 0000000000000000 page dumped because: kasan: bad access detected Memory state around the buggy address: ffffff81beca5500: 04 fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc ffffff81beca5580: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc >ffffff81beca5600: 00 fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc ^ ffffff81beca5680: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc ffffff81beca5700: 00 00 00 00 00 00 fc fc fc fc fc fc fc fc fc fc ================================================================== OF: -> got it ! Prevent the out-of-bounds read by copying the device address into a buffer of sufficient size.

Published: September 18, 2024; 4:15:03 AM -0400
V4.0:(not available)
V3.1: 7.1 HIGH
V2.0:(not available)