U.S. flag   An official website of the United States government
Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Https

Secure .gov websites use HTTPS
A lock (Dot gov) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Results (Refine Search)

Search Parameters:
  • Keyword (text search): cpe:2.3:o:linux:linux_kernel:5.17:rc4:*:*:*:*:*:*
  • CPE Name Search: true
There are 1,446 matching records.
Displaying matches 261 through 280.
Vuln ID Summary CVSS Severity
CVE-2024-42271

In the Linux kernel, the following vulnerability has been resolved: net/iucv: fix use after free in iucv_sock_close() iucv_sever_path() is called from process context and from bh context. iucv->path is used as indicator whether somebody else is taking care of severing the path (or it is already removed / never existed). This needs to be done with atomic compare and swap, otherwise there is a small window where iucv_sock_close() will try to work with a path that has already been severed and freed by iucv_callback_connrej() called by iucv_tasklet_fn(). Example: [452744.123844] Call Trace: [452744.123845] ([<0000001e87f03880>] 0x1e87f03880) [452744.123966] [<00000000d593001e>] iucv_path_sever+0x96/0x138 [452744.124330] [<000003ff801ddbca>] iucv_sever_path+0xc2/0xd0 [af_iucv] [452744.124336] [<000003ff801e01b6>] iucv_sock_close+0xa6/0x310 [af_iucv] [452744.124341] [<000003ff801e08cc>] iucv_sock_release+0x3c/0xd0 [af_iucv] [452744.124345] [<00000000d574794e>] __sock_release+0x5e/0xe8 [452744.124815] [<00000000d5747a0c>] sock_close+0x34/0x48 [452744.124820] [<00000000d5421642>] __fput+0xba/0x268 [452744.124826] [<00000000d51b382c>] task_work_run+0xbc/0xf0 [452744.124832] [<00000000d5145710>] do_notify_resume+0x88/0x90 [452744.124841] [<00000000d5978096>] system_call+0xe2/0x2c8 [452744.125319] Last Breaking-Event-Address: [452744.125321] [<00000000d5930018>] iucv_path_sever+0x90/0x138 [452744.125324] [452744.125325] Kernel panic - not syncing: Fatal exception in interrupt Note that bh_lock_sock() is not serializing the tasklet context against process context, because the check for sock_owned_by_user() and corresponding handling is missing. Ideas for a future clean-up patch: A) Correct usage of bh_lock_sock() in tasklet context, as described in Re-enqueue, if needed. This may require adding return values to the tasklet functions and thus changes to all users of iucv. B) Change iucv tasklet into worker and use only lock_sock() in af_iucv.

Published: August 17, 2024; 5:15:08 AM -0400
V4.0:(not available)
V3.1: 7.8 HIGH
V2.0:(not available)
CVE-2024-42270

In the Linux kernel, the following vulnerability has been resolved: netfilter: iptables: Fix null-ptr-deref in iptable_nat_table_init(). We had a report that iptables-restore sometimes triggered null-ptr-deref at boot time. [0] The problem is that iptable_nat_table_init() is exposed to user space before the kernel fully initialises netns. In the small race window, a user could call iptable_nat_table_init() that accesses net_generic(net, iptable_nat_net_id), which is available only after registering iptable_nat_net_ops. Let's call register_pernet_subsys() before xt_register_template(). [0]: bpfilter: Loaded bpfilter_umh pid 11702 Started bpfilter BUG: kernel NULL pointer dereference, address: 0000000000000013 PF: supervisor write access in kernel mode PF: error_code(0x0002) - not-present page PGD 0 P4D 0 PREEMPT SMP NOPTI CPU: 2 PID: 11879 Comm: iptables-restor Not tainted 6.1.92-99.174.amzn2023.x86_64 #1 Hardware name: Amazon EC2 c6i.4xlarge/, BIOS 1.0 10/16/2017 RIP: 0010:iptable_nat_table_init (net/ipv4/netfilter/iptable_nat.c:87 net/ipv4/netfilter/iptable_nat.c:121) iptable_nat Code: 10 4c 89 f6 48 89 ef e8 0b 19 bb ff 41 89 c4 85 c0 75 38 41 83 c7 01 49 83 c6 28 41 83 ff 04 75 dc 48 8b 44 24 08 48 8b 0c 24 <48> 89 08 4c 89 ef e8 a2 3b a2 cf 48 83 c4 10 44 89 e0 5b 5d 41 5c RSP: 0018:ffffbef902843cd0 EFLAGS: 00010246 RAX: 0000000000000013 RBX: ffff9f4b052caa20 RCX: ffff9f4b20988d80 RDX: 0000000000000000 RSI: 0000000000000064 RDI: ffffffffc04201c0 RBP: ffff9f4b29394000 R08: ffff9f4b07f77258 R09: ffff9f4b07f77240 R10: 0000000000000000 R11: ffff9f4b09635388 R12: 0000000000000000 R13: ffff9f4b1a3c6c00 R14: ffff9f4b20988e20 R15: 0000000000000004 FS: 00007f6284340000(0000) GS:ffff9f51fe280000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000000013 CR3: 00000001d10a6005 CR4: 00000000007706e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 PKRU: 55555554 Call Trace: <TASK> ? show_trace_log_lvl (arch/x86/kernel/dumpstack.c:259) ? show_trace_log_lvl (arch/x86/kernel/dumpstack.c:259) ? xt_find_table_lock (net/netfilter/x_tables.c:1259) ? __die_body.cold (arch/x86/kernel/dumpstack.c:478 arch/x86/kernel/dumpstack.c:420) ? page_fault_oops (arch/x86/mm/fault.c:727) ? exc_page_fault (./arch/x86/include/asm/irqflags.h:40 ./arch/x86/include/asm/irqflags.h:75 arch/x86/mm/fault.c:1470 arch/x86/mm/fault.c:1518) ? asm_exc_page_fault (./arch/x86/include/asm/idtentry.h:570) ? iptable_nat_table_init (net/ipv4/netfilter/iptable_nat.c:87 net/ipv4/netfilter/iptable_nat.c:121) iptable_nat xt_find_table_lock (net/netfilter/x_tables.c:1259) xt_request_find_table_lock (net/netfilter/x_tables.c:1287) get_info (net/ipv4/netfilter/ip_tables.c:965) ? security_capable (security/security.c:809 (discriminator 13)) ? ns_capable (kernel/capability.c:376 kernel/capability.c:397) ? do_ipt_get_ctl (net/ipv4/netfilter/ip_tables.c:1656) ? bpfilter_send_req (net/bpfilter/bpfilter_kern.c:52) bpfilter nf_getsockopt (net/netfilter/nf_sockopt.c:116) ip_getsockopt (net/ipv4/ip_sockglue.c:1827) __sys_getsockopt (net/socket.c:2327) __x64_sys_getsockopt (net/socket.c:2342 net/socket.c:2339 net/socket.c:2339) do_syscall_64 (arch/x86/entry/common.c:51 arch/x86/entry/common.c:81) entry_SYSCALL_64_after_hwframe (arch/x86/entry/entry_64.S:121) RIP: 0033:0x7f62844685ee Code: 48 8b 0d 45 28 0f 00 f7 d8 64 89 01 48 83 c8 ff c3 66 2e 0f 1f 84 00 00 00 00 00 90 f3 0f 1e fa 49 89 ca b8 37 00 00 00 0f 05 <48> 3d 00 f0 ff ff 77 0a c3 66 0f 1f 84 00 00 00 00 00 48 8b 15 09 RSP: 002b:00007ffd1f83d638 EFLAGS: 00000246 ORIG_RAX: 0000000000000037 RAX: ffffffffffffffda RBX: 00007ffd1f83d680 RCX: 00007f62844685ee RDX: 0000000000000040 RSI: 0000000000000000 RDI: 0000000000000004 RBP: 0000000000000004 R08: 00007ffd1f83d670 R09: 0000558798ffa2a0 R10: 00007ffd1f83d680 R11: 0000000000000246 R12: 00007ffd1f83e3b2 R13: 00007f6284 ---truncated---

Published: August 17, 2024; 5:15:08 AM -0400
V4.0:(not available)
V3.1: 5.5 MEDIUM
V2.0:(not available)
CVE-2024-42269

In the Linux kernel, the following vulnerability has been resolved: netfilter: iptables: Fix potential null-ptr-deref in ip6table_nat_table_init(). ip6table_nat_table_init() accesses net->gen->ptr[ip6table_nat_net_ops.id], but the function is exposed to user space before the entry is allocated via register_pernet_subsys(). Let's call register_pernet_subsys() before xt_register_template().

Published: August 17, 2024; 5:15:08 AM -0400
V4.0:(not available)
V3.1: 5.5 MEDIUM
V2.0:(not available)
CVE-2023-52889

In the Linux kernel, the following vulnerability has been resolved: apparmor: Fix null pointer deref when receiving skb during sock creation The panic below is observed when receiving ICMP packets with secmark set while an ICMP raw socket is being created. SK_CTX(sk)->label is updated in apparmor_socket_post_create(), but the packet is delivered to the socket before that, causing the null pointer dereference. Drop the packet if label context is not set. BUG: kernel NULL pointer dereference, address: 000000000000004c #PF: supervisor read access in kernel mode #PF: error_code(0x0000) - not-present page PGD 0 P4D 0 Oops: 0000 [#1] PREEMPT SMP NOPTI CPU: 0 PID: 407 Comm: a.out Not tainted 6.4.12-arch1-1 #1 3e6fa2753a2d75925c34ecb78e22e85a65d083df Hardware name: VMware, Inc. VMware Virtual Platform/440BX Desktop Reference Platform, BIOS 6.00 05/28/2020 RIP: 0010:aa_label_next_confined+0xb/0x40 Code: 00 00 48 89 ef e8 d5 25 0c 00 e9 66 ff ff ff 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 66 0f 1f 00 0f 1f 44 00 00 89 f0 <8b> 77 4c 39 c6 7e 1f 48 63 d0 48 8d 14 d7 eb 0b 83 c0 01 48 83 c2 RSP: 0018:ffffa92940003b08 EFLAGS: 00010246 RAX: 0000000000000000 RBX: 0000000000000000 RCX: 000000000000000e RDX: ffffa92940003be8 RSI: 0000000000000000 RDI: 0000000000000000 RBP: ffff8b57471e7800 R08: ffff8b574c642400 R09: 0000000000000002 R10: ffffffffbd820eeb R11: ffffffffbeb7ff00 R12: ffff8b574c642400 R13: 0000000000000001 R14: 0000000000000001 R15: 0000000000000000 FS: 00007fb092ea7640(0000) GS:ffff8b577bc00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 000000000000004c CR3: 00000001020f2005 CR4: 00000000007706f0 PKRU: 55555554 Call Trace: <IRQ> ? __die+0x23/0x70 ? page_fault_oops+0x171/0x4e0 ? exc_page_fault+0x7f/0x180 ? asm_exc_page_fault+0x26/0x30 ? aa_label_next_confined+0xb/0x40 apparmor_secmark_check+0xec/0x330 security_sock_rcv_skb+0x35/0x50 sk_filter_trim_cap+0x47/0x250 sock_queue_rcv_skb_reason+0x20/0x60 raw_rcv+0x13c/0x210 raw_local_deliver+0x1f3/0x250 ip_protocol_deliver_rcu+0x4f/0x2f0 ip_local_deliver_finish+0x76/0xa0 __netif_receive_skb_one_core+0x89/0xa0 netif_receive_skb+0x119/0x170 ? __netdev_alloc_skb+0x3d/0x140 vmxnet3_rq_rx_complete+0xb23/0x1010 [vmxnet3 56a84f9c97178c57a43a24ec073b45a9d6f01f3a] vmxnet3_poll_rx_only+0x36/0xb0 [vmxnet3 56a84f9c97178c57a43a24ec073b45a9d6f01f3a] __napi_poll+0x28/0x1b0 net_rx_action+0x2a4/0x380 __do_softirq+0xd1/0x2c8 __irq_exit_rcu+0xbb/0xf0 common_interrupt+0x86/0xa0 </IRQ> <TASK> asm_common_interrupt+0x26/0x40 RIP: 0010:apparmor_socket_post_create+0xb/0x200 Code: 08 48 85 ff 75 a1 eb b1 0f 1f 80 00 00 00 00 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 f3 0f 1e fa 0f 1f 44 00 00 41 54 <55> 48 89 fd 53 45 85 c0 0f 84 b2 00 00 00 48 8b 1d 80 56 3f 02 48 RSP: 0018:ffffa92940ce7e50 EFLAGS: 00000286 RAX: ffffffffbc756440 RBX: 0000000000000000 RCX: 0000000000000001 RDX: 0000000000000003 RSI: 0000000000000002 RDI: ffff8b574eaab740 RBP: 0000000000000001 R08: 0000000000000000 R09: 0000000000000000 R10: ffff8b57444cec70 R11: 0000000000000000 R12: 0000000000000003 R13: 0000000000000002 R14: ffff8b574eaab740 R15: ffffffffbd8e4748 ? __pfx_apparmor_socket_post_create+0x10/0x10 security_socket_post_create+0x4b/0x80 __sock_create+0x176/0x1f0 __sys_socket+0x89/0x100 __x64_sys_socket+0x17/0x20 do_syscall_64+0x5d/0x90 ? do_syscall_64+0x6c/0x90 ? do_syscall_64+0x6c/0x90 ? do_syscall_64+0x6c/0x90 entry_SYSCALL_64_after_hwframe+0x72/0xdc

Published: August 17, 2024; 5:15:07 AM -0400
V4.0:(not available)
V3.1: 5.5 MEDIUM
V2.0:(not available)
CVE-2024-42259

In the Linux kernel, the following vulnerability has been resolved: drm/i915/gem: Fix Virtual Memory mapping boundaries calculation Calculating the size of the mapped area as the lesser value between the requested size and the actual size does not consider the partial mapping offset. This can cause page fault access. Fix the calculation of the starting and ending addresses, the total size is now deduced from the difference between the end and start addresses. Additionally, the calculations have been rewritten in a clearer and more understandable form. [Joonas: Add Requires: tag] Requires: 60a2066c5005 ("drm/i915/gem: Adjust vma offset for framebuffer mmap offset") (cherry picked from commit 97b6784753da06d9d40232328efc5c5367e53417)

Published: August 14, 2024; 11:15:31 AM -0400
V4.0:(not available)
V3.1: 5.5 MEDIUM
V2.0:(not available)
CVE-2024-42253

In the Linux kernel, the following vulnerability has been resolved: gpio: pca953x: fix pca953x_irq_bus_sync_unlock race Ensure that `i2c_lock' is held when setting interrupt latch and mask in pca953x_irq_bus_sync_unlock() in order to avoid races. The other (non-probe) call site pca953x_gpio_set_multiple() ensures the lock is held before calling pca953x_write_regs(). The problem occurred when a request raced against irq_bus_sync_unlock() approximately once per thousand reboots on an i.MX8MP based system. * Normal case 0-0022: write register AI|3a {03,02,00,00,01} Input latch P0 0-0022: write register AI|49 {fc,fd,ff,ff,fe} Interrupt mask P0 0-0022: write register AI|08 {ff,00,00,00,00} Output P3 0-0022: write register AI|12 {fc,00,00,00,00} Config P3 * Race case 0-0022: write register AI|08 {ff,00,00,00,00} Output P3 0-0022: write register AI|08 {03,02,00,00,01} *** Wrong register *** 0-0022: write register AI|12 {fc,00,00,00,00} Config P3 0-0022: write register AI|49 {fc,fd,ff,ff,fe} Interrupt mask P0

Published: August 08, 2024; 5:15:08 AM -0400
V4.0:(not available)
V3.1: 4.7 MEDIUM
V2.0:(not available)
CVE-2024-42252

In the Linux kernel, the following vulnerability has been resolved: closures: Change BUG_ON() to WARN_ON() If a BUG_ON() can be hit in the wild, it shouldn't be a BUG_ON() For reference, this has popped up once in the CI, and we'll need more info to debug it: 03240 ------------[ cut here ]------------ 03240 kernel BUG at lib/closure.c:21! 03240 kernel BUG at lib/closure.c:21! 03240 Internal error: Oops - BUG: 00000000f2000800 [#1] SMP 03240 Modules linked in: 03240 CPU: 15 PID: 40534 Comm: kworker/u80:1 Not tainted 6.10.0-rc4-ktest-ga56da69799bd #25570 03240 Hardware name: linux,dummy-virt (DT) 03240 Workqueue: btree_update btree_interior_update_work 03240 pstate: 00001005 (nzcv daif -PAN -UAO -TCO -DIT +SSBS BTYPE=--) 03240 pc : closure_put+0x224/0x2a0 03240 lr : closure_put+0x24/0x2a0 03240 sp : ffff0000d12071c0 03240 x29: ffff0000d12071c0 x28: dfff800000000000 x27: ffff0000d1207360 03240 x26: 0000000000000040 x25: 0000000000000040 x24: 0000000000000040 03240 x23: ffff0000c1f20180 x22: 0000000000000000 x21: ffff0000c1f20168 03240 x20: 0000000040000000 x19: ffff0000c1f20140 x18: 0000000000000001 03240 x17: 0000000000003aa0 x16: 0000000000003ad0 x15: 1fffe0001c326974 03240 x14: 0000000000000a1e x13: 0000000000000000 x12: 1fffe000183e402d 03240 x11: ffff6000183e402d x10: dfff800000000000 x9 : ffff6000183e402e 03240 x8 : 0000000000000001 x7 : 00009fffe7c1bfd3 x6 : ffff0000c1f2016b 03240 x5 : ffff0000c1f20168 x4 : ffff6000183e402e x3 : ffff800081391954 03240 x2 : 0000000000000001 x1 : 0000000000000000 x0 : 00000000a8000000 03240 Call trace: 03240 closure_put+0x224/0x2a0 03240 bch2_check_for_deadlock+0x910/0x1028 03240 bch2_six_check_for_deadlock+0x1c/0x30 03240 six_lock_slowpath.isra.0+0x29c/0xed0 03240 six_lock_ip_waiter+0xa8/0xf8 03240 __bch2_btree_node_lock_write+0x14c/0x298 03240 bch2_trans_lock_write+0x6d4/0xb10 03240 __bch2_trans_commit+0x135c/0x5520 03240 btree_interior_update_work+0x1248/0x1c10 03240 process_scheduled_works+0x53c/0xd90 03240 worker_thread+0x370/0x8c8 03240 kthread+0x258/0x2e8 03240 ret_from_fork+0x10/0x20 03240 Code: aa1303e0 d63f0020 a94363f7 17ffff8c (d4210000) 03240 ---[ end trace 0000000000000000 ]--- 03240 Kernel panic - not syncing: Oops - BUG: Fatal exception 03240 SMP: stopping secondary CPUs 03241 SMP: failed to stop secondary CPUs 13,15 03241 Kernel Offset: disabled 03241 CPU features: 0x00,00000003,80000008,4240500b 03241 Memory Limit: none 03241 ---[ end Kernel panic - not syncing: Oops - BUG: Fatal exception ]--- 03246 ========= FAILED TIMEOUT copygc_torture_no_checksum in 7200s

Published: August 08, 2024; 5:15:08 AM -0400
V4.0:(not available)
V3.1: 5.5 MEDIUM
V2.0:(not available)
CVE-2024-42247

In the Linux kernel, the following vulnerability has been resolved: wireguard: allowedips: avoid unaligned 64-bit memory accesses On the parisc platform, the kernel issues kernel warnings because swap_endian() tries to load a 128-bit IPv6 address from an unaligned memory location: Kernel: unaligned access to 0x55f4688c in wg_allowedips_insert_v6+0x2c/0x80 [wireguard] (iir 0xf3010df) Kernel: unaligned access to 0x55f46884 in wg_allowedips_insert_v6+0x38/0x80 [wireguard] (iir 0xf2010dc) Avoid such unaligned memory accesses by instead using the get_unaligned_be64() helper macro. [Jason: replace src[8] in original patch with src+8]

Published: August 07, 2024; 12:15:47 PM -0400
V4.0:(not available)
V3.1: 5.5 MEDIUM
V2.0:(not available)
CVE-2024-42246

In the Linux kernel, the following vulnerability has been resolved: net, sunrpc: Remap EPERM in case of connection failure in xs_tcp_setup_socket When using a BPF program on kernel_connect(), the call can return -EPERM. This causes xs_tcp_setup_socket() to loop forever, filling up the syslog and causing the kernel to potentially freeze up. Neil suggested: This will propagate -EPERM up into other layers which might not be ready to handle it. It might be safer to map EPERM to an error we would be more likely to expect from the network system - such as ECONNREFUSED or ENETDOWN. ECONNREFUSED as error seems reasonable. For programs setting a different error can be out of reach (see handling in 4fbac77d2d09) in particular on kernels which do not have f10d05966196 ("bpf: Make BPF_PROG_RUN_ARRAY return -err instead of allow boolean"), thus given that it is better to simply remap for consistent behavior. UDP does handle EPERM in xs_udp_send_request().

Published: August 07, 2024; 12:15:47 PM -0400
V4.0:(not available)
V3.1: 5.5 MEDIUM
V2.0:(not available)
CVE-2024-42244

In the Linux kernel, the following vulnerability has been resolved: USB: serial: mos7840: fix crash on resume Since commit c49cfa917025 ("USB: serial: use generic method if no alternative is provided in usb serial layer"), USB serial core calls the generic resume implementation when the driver has not provided one. This can trigger a crash on resume with mos7840 since support for multiple read URBs was added back in 2011. Specifically, both port read URBs are now submitted on resume for open ports, but the context pointer of the second URB is left set to the core rather than mos7840 port structure. Fix this by implementing dedicated suspend and resume functions for mos7840. Tested with Delock 87414 USB 2.0 to 4x serial adapter. [ johan: analyse crash and rewrite commit message; set busy flag on resume; drop bulk-in check; drop unnecessary usb_kill_urb() ]

Published: August 07, 2024; 12:15:47 PM -0400
V4.0:(not available)
V3.1: 5.5 MEDIUM
V2.0:(not available)
CVE-2024-42241

In the Linux kernel, the following vulnerability has been resolved: mm/shmem: disable PMD-sized page cache if needed For shmem files, it's possible that PMD-sized page cache can't be supported by xarray. For example, 512MB page cache on ARM64 when the base page size is 64KB can't be supported by xarray. It leads to errors as the following messages indicate when this sort of xarray entry is split. WARNING: CPU: 34 PID: 7578 at lib/xarray.c:1025 xas_split_alloc+0xf8/0x128 Modules linked in: binfmt_misc nft_fib_inet nft_fib_ipv4 nft_fib_ipv6 \ nft_fib nft_reject_inet nf_reject_ipv4 nf_reject_ipv6 nft_reject \ nft_ct nft_chain_nat nf_nat nf_conntrack nf_defrag_ipv6 nf_defrag_ipv4 \ ip_set rfkill nf_tables nfnetlink vfat fat virtio_balloon drm fuse xfs \ libcrc32c crct10dif_ce ghash_ce sha2_ce sha256_arm64 sha1_ce virtio_net \ net_failover virtio_console virtio_blk failover dimlib virtio_mmio CPU: 34 PID: 7578 Comm: test Kdump: loaded Tainted: G W 6.10.0-rc5-gavin+ #9 Hardware name: QEMU KVM Virtual Machine, BIOS edk2-20240524-1.el9 05/24/2024 pstate: 83400005 (Nzcv daif +PAN -UAO +TCO +DIT -SSBS BTYPE=--) pc : xas_split_alloc+0xf8/0x128 lr : split_huge_page_to_list_to_order+0x1c4/0x720 sp : ffff8000882af5f0 x29: ffff8000882af5f0 x28: ffff8000882af650 x27: ffff8000882af768 x26: 0000000000000cc0 x25: 000000000000000d x24: ffff00010625b858 x23: ffff8000882af650 x22: ffffffdfc0900000 x21: 0000000000000000 x20: 0000000000000000 x19: ffffffdfc0900000 x18: 0000000000000000 x17: 0000000000000000 x16: 0000018000000000 x15: 52f8004000000000 x14: 0000e00000000000 x13: 0000000000002000 x12: 0000000000000020 x11: 52f8000000000000 x10: 52f8e1c0ffff6000 x9 : ffffbeb9619a681c x8 : 0000000000000003 x7 : 0000000000000000 x6 : ffff00010b02ddb0 x5 : ffffbeb96395e378 x4 : 0000000000000000 x3 : 0000000000000cc0 x2 : 000000000000000d x1 : 000000000000000c x0 : 0000000000000000 Call trace: xas_split_alloc+0xf8/0x128 split_huge_page_to_list_to_order+0x1c4/0x720 truncate_inode_partial_folio+0xdc/0x160 shmem_undo_range+0x2bc/0x6a8 shmem_fallocate+0x134/0x430 vfs_fallocate+0x124/0x2e8 ksys_fallocate+0x4c/0xa0 __arm64_sys_fallocate+0x24/0x38 invoke_syscall.constprop.0+0x7c/0xd8 do_el0_svc+0xb4/0xd0 el0_svc+0x44/0x1d8 el0t_64_sync_handler+0x134/0x150 el0t_64_sync+0x17c/0x180 Fix it by disabling PMD-sized page cache when HPAGE_PMD_ORDER is larger than MAX_PAGECACHE_ORDER. As Matthew Wilcox pointed, the page cache in a shmem file isn't represented by a multi-index entry and doesn't have this limitation when the xarry entry is split until commit 6b24ca4a1a8d ("mm: Use multi-index entries in the page cache").

Published: August 07, 2024; 12:15:46 PM -0400
V4.0:(not available)
V3.1: 5.5 MEDIUM
V2.0:(not available)
CVE-2024-42240

In the Linux kernel, the following vulnerability has been resolved: x86/bhi: Avoid warning in #DB handler due to BHI mitigation When BHI mitigation is enabled, if SYSENTER is invoked with the TF flag set then entry_SYSENTER_compat() uses CLEAR_BRANCH_HISTORY and calls the clear_bhb_loop() before the TF flag is cleared. This causes the #DB handler (exc_debug_kernel()) to issue a warning because single-step is used outside the entry_SYSENTER_compat() function. To address this issue, entry_SYSENTER_compat() should use CLEAR_BRANCH_HISTORY after making sure the TF flag is cleared. The problem can be reproduced with the following sequence: $ cat sysenter_step.c int main() { asm("pushf; pop %ax; bts $8,%ax; push %ax; popf; sysenter"); } $ gcc -o sysenter_step sysenter_step.c $ ./sysenter_step Segmentation fault (core dumped) The program is expected to crash, and the #DB handler will issue a warning. Kernel log: WARNING: CPU: 27 PID: 7000 at arch/x86/kernel/traps.c:1009 exc_debug_kernel+0xd2/0x160 ... RIP: 0010:exc_debug_kernel+0xd2/0x160 ... Call Trace: <#DB> ? show_regs+0x68/0x80 ? __warn+0x8c/0x140 ? exc_debug_kernel+0xd2/0x160 ? report_bug+0x175/0x1a0 ? handle_bug+0x44/0x90 ? exc_invalid_op+0x1c/0x70 ? asm_exc_invalid_op+0x1f/0x30 ? exc_debug_kernel+0xd2/0x160 exc_debug+0x43/0x50 asm_exc_debug+0x1e/0x40 RIP: 0010:clear_bhb_loop+0x0/0xb0 ... </#DB> <TASK> ? entry_SYSENTER_compat_after_hwframe+0x6e/0x8d </TASK> [ bp: Massage commit message. ]

Published: August 07, 2024; 12:15:46 PM -0400
V4.0:(not available)
V3.1: 5.5 MEDIUM
V2.0:(not available)
CVE-2024-42239

In the Linux kernel, the following vulnerability has been resolved: bpf: Fail bpf_timer_cancel when callback is being cancelled Given a schedule: timer1 cb timer2 cb bpf_timer_cancel(timer2); bpf_timer_cancel(timer1); Both bpf_timer_cancel calls would wait for the other callback to finish executing, introducing a lockup. Add an atomic_t count named 'cancelling' in bpf_hrtimer. This keeps track of all in-flight cancellation requests for a given BPF timer. Whenever cancelling a BPF timer, we must check if we have outstanding cancellation requests, and if so, we must fail the operation with an error (-EDEADLK) since cancellation is synchronous and waits for the callback to finish executing. This implies that we can enter a deadlock situation involving two or more timer callbacks executing in parallel and attempting to cancel one another. Note that we avoid incrementing the cancelling counter for the target timer (the one being cancelled) if bpf_timer_cancel is not invoked from a callback, to avoid spurious errors. The whole point of detecting cur->cancelling and returning -EDEADLK is to not enter a busy wait loop (which may or may not lead to a lockup). This does not apply in case the caller is in a non-callback context, the other side can continue to cancel as it sees fit without running into errors. Background on prior attempts: Earlier versions of this patch used a bool 'cancelling' bit and used the following pattern under timer->lock to publish cancellation status. lock(t->lock); t->cancelling = true; mb(); if (cur->cancelling) return -EDEADLK; unlock(t->lock); hrtimer_cancel(t->timer); t->cancelling = false; The store outside the critical section could overwrite a parallel requests t->cancelling assignment to true, to ensure the parallely executing callback observes its cancellation status. It would be necessary to clear this cancelling bit once hrtimer_cancel is done, but lack of serialization introduced races. Another option was explored where bpf_timer_start would clear the bit when (re)starting the timer under timer->lock. This would ensure serialized access to the cancelling bit, but may allow it to be cleared before in-flight hrtimer_cancel has finished executing, such that lockups can occur again. Thus, we choose an atomic counter to keep track of all outstanding cancellation requests and use it to prevent lockups in case callbacks attempt to cancel each other while executing in parallel.

Published: August 07, 2024; 12:15:46 PM -0400
V4.0:(not available)
V3.1: 5.5 MEDIUM
V2.0:(not available)
CVE-2024-42238

In the Linux kernel, the following vulnerability has been resolved: firmware: cs_dsp: Return error if block header overflows file Return an error from cs_dsp_power_up() if a block header is longer than the amount of data left in the file. The previous code in cs_dsp_load() and cs_dsp_load_coeff() would loop while there was enough data left in the file for a valid region. This protected against overrunning the end of the file data, but it didn't abort the file processing with an error.

Published: August 07, 2024; 12:15:46 PM -0400
V4.0:(not available)
V3.1: 5.5 MEDIUM
V2.0:(not available)
CVE-2024-42237

In the Linux kernel, the following vulnerability has been resolved: firmware: cs_dsp: Validate payload length before processing block Move the payload length check in cs_dsp_load() and cs_dsp_coeff_load() to be done before the block is processed. The check that the length of a block payload does not exceed the number of remaining bytes in the firwmware file buffer was being done near the end of the loop iteration. However, some code before that check used the length field without validating it.

Published: August 07, 2024; 12:15:46 PM -0400
V4.0:(not available)
V3.1: 5.5 MEDIUM
V2.0:(not available)
CVE-2024-42236

In the Linux kernel, the following vulnerability has been resolved: usb: gadget: configfs: Prevent OOB read/write in usb_string_copy() Userspace provided string 's' could trivially have the length zero. Left unchecked this will firstly result in an OOB read in the form `if (str[0 - 1] == '\n') followed closely by an OOB write in the form `str[0 - 1] = '\0'`. There is already a validating check to catch strings that are too long. Let's supply an additional check for invalid strings that are too short.

Published: August 07, 2024; 12:15:46 PM -0400
V4.0:(not available)
V3.1: 5.5 MEDIUM
V2.0:(not available)
CVE-2024-42232

In the Linux kernel, the following vulnerability has been resolved: libceph: fix race between delayed_work() and ceph_monc_stop() The way the delayed work is handled in ceph_monc_stop() is prone to races with mon_fault() and possibly also finish_hunting(). Both of these can requeue the delayed work which wouldn't be canceled by any of the following code in case that happens after cancel_delayed_work_sync() runs -- __close_session() doesn't mess with the delayed work in order to avoid interfering with the hunting interval logic. This part was missed in commit b5d91704f53e ("libceph: behave in mon_fault() if cur_mon < 0") and use-after-free can still ensue on monc and objects that hang off of it, with monc->auth and monc->monmap being particularly susceptible to quickly being reused. To fix this: - clear monc->cur_mon and monc->hunting as part of closing the session in ceph_monc_stop() - bail from delayed_work() if monc->cur_mon is cleared, similar to how it's done in mon_fault() and finish_hunting() (based on monc->hunting) - call cancel_delayed_work_sync() after the session is closed

Published: August 07, 2024; 12:15:46 PM -0400
V4.0:(not available)
V3.1: 5.5 MEDIUM
V2.0:(not available)
CVE-2024-42230

In the Linux kernel, the following vulnerability has been resolved: powerpc/pseries: Fix scv instruction crash with kexec kexec on pseries disables AIL (reloc_on_exc), required for scv instruction support, before other CPUs have been shut down. This means they can execute scv instructions after AIL is disabled, which causes an interrupt at an unexpected entry location that crashes the kernel. Change the kexec sequence to disable AIL after other CPUs have been brought down. As a refresher, the real-mode scv interrupt vector is 0x17000, and the fixed-location head code probably couldn't easily deal with implementing such high addresses so it was just decided not to support that interrupt at all.

Published: July 30, 2024; 4:15:08 AM -0400
V4.0:(not available)
V3.1: 4.4 MEDIUM
V2.0:(not available)
CVE-2024-42229

In the Linux kernel, the following vulnerability has been resolved: crypto: aead,cipher - zeroize key buffer after use I.G 9.7.B for FIPS 140-3 specifies that variables temporarily holding cryptographic information should be zeroized once they are no longer needed. Accomplish this by using kfree_sensitive for buffers that previously held the private key.

Published: July 30, 2024; 4:15:08 AM -0400
V4.0:(not available)
V3.1: 4.1 MEDIUM
V2.0:(not available)
CVE-2024-42228

In the Linux kernel, the following vulnerability has been resolved: drm/amdgpu: Using uninitialized value *size when calling amdgpu_vce_cs_reloc Initialize the size before calling amdgpu_vce_cs_reloc, such as case 0x03000001. V2: To really improve the handling we would actually need to have a separate value of 0xffffffff.(Christian)

Published: July 30, 2024; 4:15:07 AM -0400
V4.0:(not available)
V3.1: 7.0 HIGH
V2.0:(not available)