Search Results (Refine Search)
- Keyword (text search): cpe:2.3:o:linux:linux_kernel:6.7:rc7:*:*:*:*:*:*
- CPE Name Search: true
Vuln ID | Summary | CVSS Severity |
---|---|---|
CVE-2024-53059 |
In the Linux kernel, the following vulnerability has been resolved: wifi: iwlwifi: mvm: Fix response handling in iwl_mvm_send_recovery_cmd() 1. The size of the response packet is not validated. 2. The response buffer is not freed. Resolve these issues by switching to iwl_mvm_send_cmd_status(), which handles both size validation and frees the buffer. Published: November 19, 2024; 1:15:25 PM -0500 |
V4.0:(not available) V3.1: 7.8 HIGH V2.0:(not available) |
CVE-2024-53058 |
In the Linux kernel, the following vulnerability has been resolved: net: stmmac: TSO: Fix unbalanced DMA map/unmap for non-paged SKB data In case the non-paged data of a SKB carries protocol header and protocol payload to be transmitted on a certain platform that the DMA AXI address width is configured to 40-bit/48-bit, or the size of the non-paged data is bigger than TSO_MAX_BUFF_SIZE on a certain platform that the DMA AXI address width is configured to 32-bit, then this SKB requires at least two DMA transmit descriptors to serve it. For example, three descriptors are allocated to split one DMA buffer mapped from one piece of non-paged data: dma_desc[N + 0], dma_desc[N + 1], dma_desc[N + 2]. Then three elements of tx_q->tx_skbuff_dma[] will be allocated to hold extra information to be reused in stmmac_tx_clean(): tx_q->tx_skbuff_dma[N + 0], tx_q->tx_skbuff_dma[N + 1], tx_q->tx_skbuff_dma[N + 2]. Now we focus on tx_q->tx_skbuff_dma[entry].buf, which is the DMA buffer address returned by DMA mapping call. stmmac_tx_clean() will try to unmap the DMA buffer _ONLY_IF_ tx_q->tx_skbuff_dma[entry].buf is a valid buffer address. The expected behavior that saves DMA buffer address of this non-paged data to tx_q->tx_skbuff_dma[entry].buf is: tx_q->tx_skbuff_dma[N + 0].buf = NULL; tx_q->tx_skbuff_dma[N + 1].buf = NULL; tx_q->tx_skbuff_dma[N + 2].buf = dma_map_single(); Unfortunately, the current code misbehaves like this: tx_q->tx_skbuff_dma[N + 0].buf = dma_map_single(); tx_q->tx_skbuff_dma[N + 1].buf = NULL; tx_q->tx_skbuff_dma[N + 2].buf = NULL; On the stmmac_tx_clean() side, when dma_desc[N + 0] is closed by the DMA engine, tx_q->tx_skbuff_dma[N + 0].buf is a valid buffer address obviously, then the DMA buffer will be unmapped immediately. There may be a rare case that the DMA engine does not finish the pending dma_desc[N + 1], dma_desc[N + 2] yet. Now things will go horribly wrong, DMA is going to access a unmapped/unreferenced memory region, corrupted data will be transmited or iommu fault will be triggered :( In contrast, the for-loop that maps SKB fragments behaves perfectly as expected, and that is how the driver should do for both non-paged data and paged frags actually. This patch corrects DMA map/unmap sequences by fixing the array index for tx_q->tx_skbuff_dma[entry].buf when assigning DMA buffer address. Tested and verified on DWXGMAC CORE 3.20a Published: November 19, 2024; 1:15:25 PM -0500 |
V4.0:(not available) V3.1: 5.5 MEDIUM V2.0:(not available) |
CVE-2024-53057 |
In the Linux kernel, the following vulnerability has been resolved: net/sched: stop qdisc_tree_reduce_backlog on TC_H_ROOT In qdisc_tree_reduce_backlog, Qdiscs with major handle ffff: are assumed to be either root or ingress. This assumption is bogus since it's valid to create egress qdiscs with major handle ffff: Budimir Markovic found that for qdiscs like DRR that maintain an active class list, it will cause a UAF with a dangling class pointer. In 066a3b5b2346, the concern was to avoid iterating over the ingress qdisc since its parent is itself. The proper fix is to stop when parent TC_H_ROOT is reached because the only way to retrieve ingress is when a hierarchy which does not contain a ffff: major handle call into qdisc_lookup with TC_H_MAJ(TC_H_ROOT). In the scenario where major ffff: is an egress qdisc in any of the tree levels, the updates will also propagate to TC_H_ROOT, which then the iteration must stop. net/sched/sch_api.c | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) Published: November 19, 2024; 1:15:25 PM -0500 |
V4.0:(not available) V3.1: 7.8 HIGH V2.0:(not available) |
CVE-2024-53056 |
In the Linux kernel, the following vulnerability has been resolved: drm/mediatek: Fix potential NULL dereference in mtk_crtc_destroy() In mtk_crtc_create(), if the call to mbox_request_channel() fails then we set the "mtk_crtc->cmdq_client.chan" pointer to NULL. In that situation, we do not call cmdq_pkt_create(). During the cleanup, we need to check if the "mtk_crtc->cmdq_client.chan" is NULL first before calling cmdq_pkt_destroy(). Calling cmdq_pkt_destroy() is unnecessary if we didn't call cmdq_pkt_create() and it will result in a NULL pointer dereference. Published: November 19, 2024; 1:15:25 PM -0500 |
V4.0:(not available) V3.1: 5.5 MEDIUM V2.0:(not available) |
CVE-2024-53055 |
In the Linux kernel, the following vulnerability has been resolved: wifi: iwlwifi: mvm: fix 6 GHz scan construction If more than 255 colocated APs exist for the set of all APs found during 2.4/5 GHz scanning, then the 6 GHz scan construction will loop forever since the loop variable has type u8, which can never reach the number found when that's bigger than 255, and is stored in a u32 variable. Also move it into the loops to have a smaller scope. Using a u32 there is fine, we limit the number of APs in the scan list and each has a limit on the number of RNR entries due to the frame size. With a limit of 1000 scan results, a frame size upper bound of 4096 (really it's more like ~2300) and a TBTT entry size of at least 11, we get an upper bound for the number of ~372k, well in the bounds of a u32. Published: November 19, 2024; 1:15:25 PM -0500 |
V4.0:(not available) V3.1: 5.5 MEDIUM V2.0:(not available) |
CVE-2024-53052 |
In the Linux kernel, the following vulnerability has been resolved: io_uring/rw: fix missing NOWAIT check for O_DIRECT start write When io_uring starts a write, it'll call kiocb_start_write() to bump the super block rwsem, preventing any freezes from happening while that write is in-flight. The freeze side will grab that rwsem for writing, excluding any new writers from happening and waiting for existing writes to finish. But io_uring unconditionally uses kiocb_start_write(), which will block if someone is currently attempting to freeze the mount point. This causes a deadlock where freeze is waiting for previous writes to complete, but the previous writes cannot complete, as the task that is supposed to complete them is blocked waiting on starting a new write. This results in the following stuck trace showing that dependency with the write blocked starting a new write: task:fio state:D stack:0 pid:886 tgid:886 ppid:876 Call trace: __switch_to+0x1d8/0x348 __schedule+0x8e8/0x2248 schedule+0x110/0x3f0 percpu_rwsem_wait+0x1e8/0x3f8 __percpu_down_read+0xe8/0x500 io_write+0xbb8/0xff8 io_issue_sqe+0x10c/0x1020 io_submit_sqes+0x614/0x2110 __arm64_sys_io_uring_enter+0x524/0x1038 invoke_syscall+0x74/0x268 el0_svc_common.constprop.0+0x160/0x238 do_el0_svc+0x44/0x60 el0_svc+0x44/0xb0 el0t_64_sync_handler+0x118/0x128 el0t_64_sync+0x168/0x170 INFO: task fsfreeze:7364 blocked for more than 15 seconds. Not tainted 6.12.0-rc5-00063-g76aaf945701c #7963 with the attempting freezer stuck trying to grab the rwsem: task:fsfreeze state:D stack:0 pid:7364 tgid:7364 ppid:995 Call trace: __switch_to+0x1d8/0x348 __schedule+0x8e8/0x2248 schedule+0x110/0x3f0 percpu_down_write+0x2b0/0x680 freeze_super+0x248/0x8a8 do_vfs_ioctl+0x149c/0x1b18 __arm64_sys_ioctl+0xd0/0x1a0 invoke_syscall+0x74/0x268 el0_svc_common.constprop.0+0x160/0x238 do_el0_svc+0x44/0x60 el0_svc+0x44/0xb0 el0t_64_sync_handler+0x118/0x128 el0t_64_sync+0x168/0x170 Fix this by having the io_uring side honor IOCB_NOWAIT, and only attempt a blocking grab of the super block rwsem if it isn't set. For normal issue where IOCB_NOWAIT would always be set, this returns -EAGAIN which will have io_uring core issue a blocking attempt of the write. That will in turn also get completions run, ensuring forward progress. Since freezing requires CAP_SYS_ADMIN in the first place, this isn't something that can be triggered by a regular user. Published: November 19, 2024; 1:15:25 PM -0500 |
V4.0:(not available) V3.1: 4.4 MEDIUM V2.0:(not available) |
CVE-2024-53051 |
In the Linux kernel, the following vulnerability has been resolved: drm/i915/hdcp: Add encoder check in intel_hdcp_get_capability Sometimes during hotplug scenario or suspend/resume scenario encoder is not always initialized when intel_hdcp_get_capability add a check to avoid kernel null pointer dereference. Published: November 19, 2024; 1:15:25 PM -0500 |
V4.0:(not available) V3.1: 5.5 MEDIUM V2.0:(not available) |
CVE-2024-53050 |
In the Linux kernel, the following vulnerability has been resolved: drm/i915/hdcp: Add encoder check in hdcp2_get_capability Add encoder check in intel_hdcp2_get_capability to avoid null pointer error. Published: November 19, 2024; 1:15:25 PM -0500 |
V4.0:(not available) V3.1: 5.5 MEDIUM V2.0:(not available) |
CVE-2024-53048 |
In the Linux kernel, the following vulnerability has been resolved: ice: fix crash on probe for DPLL enabled E810 LOM The E810 Lan On Motherboard (LOM) design is vendor specific. Intel provides the reference design, but it is up to vendor on the final product design. For some cases, like Linux DPLL support, the static values defined in the driver does not reflect the actual LOM design. Current implementation of dpll pins is causing the crash on probe of the ice driver for such DPLL enabled E810 LOM designs: WARNING: (...) at drivers/dpll/dpll_core.c:495 dpll_pin_get+0x2c4/0x330 ... Call Trace: <TASK> ? __warn+0x83/0x130 ? dpll_pin_get+0x2c4/0x330 ? report_bug+0x1b7/0x1d0 ? handle_bug+0x42/0x70 ? exc_invalid_op+0x18/0x70 ? asm_exc_invalid_op+0x1a/0x20 ? dpll_pin_get+0x117/0x330 ? dpll_pin_get+0x2c4/0x330 ? dpll_pin_get+0x117/0x330 ice_dpll_get_pins.isra.0+0x52/0xe0 [ice] ... The number of dpll pins enabled by LOM vendor is greater than expected and defined in the driver for Intel designed NICs, which causes the crash. Prevent the crash and allow generic pin initialization within Linux DPLL subsystem for DPLL enabled E810 LOM designs. Newly designed solution for described issue will be based on "per HW design" pin initialization. It requires pin information dynamically acquired from the firmware and is already in progress, planned for next-tree only. Published: November 19, 2024; 1:15:25 PM -0500 |
V4.0:(not available) V3.1: 5.5 MEDIUM V2.0:(not available) |
CVE-2024-53047 |
In the Linux kernel, the following vulnerability has been resolved: mptcp: init: protect sched with rcu_read_lock Enabling CONFIG_PROVE_RCU_LIST with its dependence CONFIG_RCU_EXPERT creates this splat when an MPTCP socket is created: ============================= WARNING: suspicious RCU usage 6.12.0-rc2+ #11 Not tainted ----------------------------- net/mptcp/sched.c:44 RCU-list traversed in non-reader section!! other info that might help us debug this: rcu_scheduler_active = 2, debug_locks = 1 no locks held by mptcp_connect/176. stack backtrace: CPU: 0 UID: 0 PID: 176 Comm: mptcp_connect Not tainted 6.12.0-rc2+ #11 Hardware name: Bochs Bochs, BIOS Bochs 01/01/2011 Call Trace: <TASK> dump_stack_lvl (lib/dump_stack.c:123) lockdep_rcu_suspicious (kernel/locking/lockdep.c:6822) mptcp_sched_find (net/mptcp/sched.c:44 (discriminator 7)) mptcp_init_sock (net/mptcp/protocol.c:2867 (discriminator 1)) ? sock_init_data_uid (arch/x86/include/asm/atomic.h:28) inet_create.part.0.constprop.0 (net/ipv4/af_inet.c:386) ? __sock_create (include/linux/rcupdate.h:347 (discriminator 1)) __sock_create (net/socket.c:1576) __sys_socket (net/socket.c:1671) ? __pfx___sys_socket (net/socket.c:1712) ? do_user_addr_fault (arch/x86/mm/fault.c:1419 (discriminator 1)) __x64_sys_socket (net/socket.c:1728) do_syscall_64 (arch/x86/entry/common.c:52 (discriminator 1)) entry_SYSCALL_64_after_hwframe (arch/x86/entry/entry_64.S:130) That's because when the socket is initialised, rcu_read_lock() is not used despite the explicit comment written above the declaration of mptcp_sched_find() in sched.c. Adding the missing lock/unlock avoids the warning. Published: November 19, 2024; 1:15:25 PM -0500 |
V4.0:(not available) V3.1: 5.5 MEDIUM V2.0:(not available) |
CVE-2024-53046 |
In the Linux kernel, the following vulnerability has been resolved: arm64: dts: imx8ulp: correct the flexspi compatible string The flexspi on imx8ulp only has 16 LUTs, and imx8mm flexspi has 32 LUTs, so correct the compatible string here, otherwise will meet below error: [ 1.119072] ------------[ cut here ]------------ [ 1.123926] WARNING: CPU: 0 PID: 1 at drivers/spi/spi-nxp-fspi.c:855 nxp_fspi_exec_op+0xb04/0xb64 [ 1.133239] Modules linked in: [ 1.136448] CPU: 0 UID: 0 PID: 1 Comm: swapper/0 Not tainted 6.11.0-rc6-next-20240902-00001-g131bf9439dd9 #69 [ 1.146821] Hardware name: NXP i.MX8ULP EVK (DT) [ 1.151647] pstate: 40000005 (nZcv daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--) [ 1.158931] pc : nxp_fspi_exec_op+0xb04/0xb64 [ 1.163496] lr : nxp_fspi_exec_op+0xa34/0xb64 [ 1.168060] sp : ffff80008002b2a0 [ 1.171526] x29: ffff80008002b2d0 x28: 0000000000000000 x27: 0000000000000000 [ 1.179002] x26: ffff2eb645542580 x25: ffff800080610014 x24: ffff800080610000 [ 1.186480] x23: ffff2eb645548080 x22: 0000000000000006 x21: ffff2eb6455425e0 [ 1.193956] x20: 0000000000000000 x19: ffff80008002b5e0 x18: ffffffffffffffff [ 1.201432] x17: ffff2eb644467508 x16: 0000000000000138 x15: 0000000000000002 [ 1.208907] x14: 0000000000000000 x13: ffff2eb6400d8080 x12: 00000000ffffff00 [ 1.216378] x11: 0000000000000000 x10: ffff2eb6400d8080 x9 : ffff2eb697adca80 [ 1.223850] x8 : ffff2eb697ad3cc0 x7 : 0000000100000000 x6 : 0000000000000001 [ 1.231324] x5 : 0000000000000000 x4 : 0000000000000000 x3 : 00000000000007a6 [ 1.238795] x2 : 0000000000000000 x1 : 00000000000001ce x0 : 00000000ffffff92 [ 1.246267] Call trace: [ 1.248824] nxp_fspi_exec_op+0xb04/0xb64 [ 1.253031] spi_mem_exec_op+0x3a0/0x430 [ 1.257139] spi_nor_read_id+0x80/0xcc [ 1.261065] spi_nor_scan+0x1ec/0xf10 [ 1.264901] spi_nor_probe+0x108/0x2fc [ 1.268828] spi_mem_probe+0x6c/0xbc [ 1.272574] spi_probe+0x84/0xe4 [ 1.275958] really_probe+0xbc/0x29c [ 1.279713] __driver_probe_device+0x78/0x12c [ 1.284277] driver_probe_device+0xd8/0x15c [ 1.288660] __device_attach_driver+0xb8/0x134 [ 1.293316] bus_for_each_drv+0x88/0xe8 [ 1.297337] __device_attach+0xa0/0x190 [ 1.301353] device_initial_probe+0x14/0x20 [ 1.305734] bus_probe_device+0xac/0xb0 [ 1.309752] device_add+0x5d0/0x790 [ 1.313408] __spi_add_device+0x134/0x204 [ 1.317606] of_register_spi_device+0x3b4/0x590 [ 1.322348] spi_register_controller+0x47c/0x754 [ 1.327181] devm_spi_register_controller+0x4c/0xa4 [ 1.332289] nxp_fspi_probe+0x1cc/0x2b0 [ 1.336307] platform_probe+0x68/0xc4 [ 1.340145] really_probe+0xbc/0x29c [ 1.343893] __driver_probe_device+0x78/0x12c [ 1.348457] driver_probe_device+0xd8/0x15c [ 1.352838] __driver_attach+0x90/0x19c [ 1.356857] bus_for_each_dev+0x7c/0xdc [ 1.360877] driver_attach+0x24/0x30 [ 1.364624] bus_add_driver+0xe4/0x208 [ 1.368552] driver_register+0x5c/0x124 [ 1.372573] __platform_driver_register+0x28/0x34 [ 1.377497] nxp_fspi_driver_init+0x1c/0x28 [ 1.381888] do_one_initcall+0x80/0x1c8 [ 1.385908] kernel_init_freeable+0x1c4/0x28c [ 1.390472] kernel_init+0x20/0x1d8 [ 1.394138] ret_from_fork+0x10/0x20 [ 1.397885] ---[ end trace 0000000000000000 ]--- [ 1.407908] ------------[ cut here ]------------ Published: November 19, 2024; 1:15:24 PM -0500 |
V4.0:(not available) V3.1: 5.5 MEDIUM V2.0:(not available) |
CVE-2024-53045 |
In the Linux kernel, the following vulnerability has been resolved: ASoC: dapm: fix bounds checker error in dapm_widget_list_create The widgets array in the snd_soc_dapm_widget_list has a __counted_by attribute attached to it, which points to the num_widgets variable. This attribute is used in bounds checking, and if it is not set before the array is filled, then the bounds sanitizer will issue a warning or a kernel panic if CONFIG_UBSAN_TRAP is set. This patch sets the size of the widgets list calculated with list_for_each as the initial value for num_widgets as it is used for allocating memory for the array. It is updated with the actual number of added elements after the array is filled. Published: November 19, 2024; 1:15:24 PM -0500 |
V4.0:(not available) V3.1: 5.5 MEDIUM V2.0:(not available) |
CVE-2024-53043 |
In the Linux kernel, the following vulnerability has been resolved: mctp i2c: handle NULL header address daddr can be NULL if there is no neighbour table entry present, in that case the tx packet should be dropped. saddr will usually be set by MCTP core, but check for NULL in case a packet is transmitted by a different protocol. Published: November 19, 2024; 1:15:24 PM -0500 |
V4.0:(not available) V3.1: 5.5 MEDIUM V2.0:(not available) |
CVE-2024-53042 |
In the Linux kernel, the following vulnerability has been resolved: ipv4: ip_tunnel: Fix suspicious RCU usage warning in ip_tunnel_init_flow() There are code paths from which the function is called without holding the RCU read lock, resulting in a suspicious RCU usage warning [1]. Fix by using l3mdev_master_upper_ifindex_by_index() which will acquire the RCU read lock before calling l3mdev_master_upper_ifindex_by_index_rcu(). [1] WARNING: suspicious RCU usage 6.12.0-rc3-custom-gac8f72681cf2 #141 Not tainted ----------------------------- net/core/dev.c:876 RCU-list traversed in non-reader section!! other info that might help us debug this: rcu_scheduler_active = 2, debug_locks = 1 1 lock held by ip/361: #0: ffffffff86fc7cb0 (rtnl_mutex){+.+.}-{3:3}, at: rtnetlink_rcv_msg+0x377/0xf60 stack backtrace: CPU: 3 UID: 0 PID: 361 Comm: ip Not tainted 6.12.0-rc3-custom-gac8f72681cf2 #141 Hardware name: Bochs Bochs, BIOS Bochs 01/01/2011 Call Trace: <TASK> dump_stack_lvl+0xba/0x110 lockdep_rcu_suspicious.cold+0x4f/0xd6 dev_get_by_index_rcu+0x1d3/0x210 l3mdev_master_upper_ifindex_by_index_rcu+0x2b/0xf0 ip_tunnel_bind_dev+0x72f/0xa00 ip_tunnel_newlink+0x368/0x7a0 ipgre_newlink+0x14c/0x170 __rtnl_newlink+0x1173/0x19c0 rtnl_newlink+0x6c/0xa0 rtnetlink_rcv_msg+0x3cc/0xf60 netlink_rcv_skb+0x171/0x450 netlink_unicast+0x539/0x7f0 netlink_sendmsg+0x8c1/0xd80 ____sys_sendmsg+0x8f9/0xc20 ___sys_sendmsg+0x197/0x1e0 __sys_sendmsg+0x122/0x1f0 do_syscall_64+0xbb/0x1d0 entry_SYSCALL_64_after_hwframe+0x77/0x7f Published: November 19, 2024; 1:15:24 PM -0500 |
V4.0:(not available) V3.1: 5.5 MEDIUM V2.0:(not available) |
CVE-2024-50304 |
In the Linux kernel, the following vulnerability has been resolved: ipv4: ip_tunnel: Fix suspicious RCU usage warning in ip_tunnel_find() The per-netns IP tunnel hash table is protected by the RTNL mutex and ip_tunnel_find() is only called from the control path where the mutex is taken. Add a lockdep expression to hlist_for_each_entry_rcu() in ip_tunnel_find() in order to validate that the mutex is held and to silence the suspicious RCU usage warning [1]. [1] WARNING: suspicious RCU usage 6.12.0-rc3-custom-gd95d9a31aceb #139 Not tainted ----------------------------- net/ipv4/ip_tunnel.c:221 RCU-list traversed in non-reader section!! other info that might help us debug this: rcu_scheduler_active = 2, debug_locks = 1 1 lock held by ip/362: #0: ffffffff86fc7cb0 (rtnl_mutex){+.+.}-{3:3}, at: rtnetlink_rcv_msg+0x377/0xf60 stack backtrace: CPU: 12 UID: 0 PID: 362 Comm: ip Not tainted 6.12.0-rc3-custom-gd95d9a31aceb #139 Hardware name: Bochs Bochs, BIOS Bochs 01/01/2011 Call Trace: <TASK> dump_stack_lvl+0xba/0x110 lockdep_rcu_suspicious.cold+0x4f/0xd6 ip_tunnel_find+0x435/0x4d0 ip_tunnel_newlink+0x517/0x7a0 ipgre_newlink+0x14c/0x170 __rtnl_newlink+0x1173/0x19c0 rtnl_newlink+0x6c/0xa0 rtnetlink_rcv_msg+0x3cc/0xf60 netlink_rcv_skb+0x171/0x450 netlink_unicast+0x539/0x7f0 netlink_sendmsg+0x8c1/0xd80 ____sys_sendmsg+0x8f9/0xc20 ___sys_sendmsg+0x197/0x1e0 __sys_sendmsg+0x122/0x1f0 do_syscall_64+0xbb/0x1d0 entry_SYSCALL_64_after_hwframe+0x77/0x7f Published: November 19, 2024; 1:15:22 PM -0500 |
V4.0:(not available) V3.1: 5.5 MEDIUM V2.0:(not available) |
CVE-2024-50302 |
In the Linux kernel, the following vulnerability has been resolved: HID: core: zero-initialize the report buffer Since the report buffer is used by all kinds of drivers in various ways, let's zero-initialize it during allocation to make sure that it can't be ever used to leak kernel memory via specially-crafted report. Published: November 18, 2024; 9:16:32 PM -0500 |
V4.0:(not available) V3.1: 5.5 MEDIUM V2.0:(not available) |
CVE-2024-50301 |
In the Linux kernel, the following vulnerability has been resolved: security/keys: fix slab-out-of-bounds in key_task_permission KASAN reports an out of bounds read: BUG: KASAN: slab-out-of-bounds in __kuid_val include/linux/uidgid.h:36 BUG: KASAN: slab-out-of-bounds in uid_eq include/linux/uidgid.h:63 [inline] BUG: KASAN: slab-out-of-bounds in key_task_permission+0x394/0x410 security/keys/permission.c:54 Read of size 4 at addr ffff88813c3ab618 by task stress-ng/4362 CPU: 2 PID: 4362 Comm: stress-ng Not tainted 5.10.0-14930-gafbffd6c3ede #15 Call Trace: __dump_stack lib/dump_stack.c:82 [inline] dump_stack+0x107/0x167 lib/dump_stack.c:123 print_address_description.constprop.0+0x19/0x170 mm/kasan/report.c:400 __kasan_report.cold+0x6c/0x84 mm/kasan/report.c:560 kasan_report+0x3a/0x50 mm/kasan/report.c:585 __kuid_val include/linux/uidgid.h:36 [inline] uid_eq include/linux/uidgid.h:63 [inline] key_task_permission+0x394/0x410 security/keys/permission.c:54 search_nested_keyrings+0x90e/0xe90 security/keys/keyring.c:793 This issue was also reported by syzbot. It can be reproduced by following these steps(more details [1]): 1. Obtain more than 32 inputs that have similar hashes, which ends with the pattern '0xxxxxxxe6'. 2. Reboot and add the keys obtained in step 1. The reproducer demonstrates how this issue happened: 1. In the search_nested_keyrings function, when it iterates through the slots in a node(below tag ascend_to_node), if the slot pointer is meta and node->back_pointer != NULL(it means a root), it will proceed to descend_to_node. However, there is an exception. If node is the root, and one of the slots points to a shortcut, it will be treated as a keyring. 2. Whether the ptr is keyring decided by keyring_ptr_is_keyring function. However, KEYRING_PTR_SUBTYPE is 0x2UL, the same as ASSOC_ARRAY_PTR_SUBTYPE_MASK. 3. When 32 keys with the similar hashes are added to the tree, the ROOT has keys with hashes that are not similar (e.g. slot 0) and it splits NODE A without using a shortcut. When NODE A is filled with keys that all hashes are xxe6, the keys are similar, NODE A will split with a shortcut. Finally, it forms the tree as shown below, where slot 6 points to a shortcut. NODE A +------>+---+ ROOT | | 0 | xxe6 +---+ | +---+ xxxx | 0 | shortcut : : xxe6 +---+ | +---+ xxe6 : : | | | xxe6 +---+ | +---+ | 6 |---+ : : xxe6 +---+ +---+ xxe6 : : | f | xxe6 +---+ +---+ xxe6 | f | +---+ 4. As mentioned above, If a slot(slot 6) of the root points to a shortcut, it may be mistakenly transferred to a key*, leading to a read out-of-bounds read. To fix this issue, one should jump to descend_to_node if the ptr is a shortcut, regardless of whether the node is root or not. [1] https://lore.kernel.org/linux-kernel/1cfa878e-8c7b-4570-8606-21daf5e13ce7@huaweicloud.com/ [jarkko: tweaked the commit message a bit to have an appropriate closes tag.] Published: November 18, 2024; 9:16:32 PM -0500 |
V4.0:(not available) V3.1: 7.1 HIGH V2.0:(not available) |
CVE-2024-50300 |
In the Linux kernel, the following vulnerability has been resolved: regulator: rtq2208: Fix uninitialized use of regulator_config Fix rtq2208 driver uninitialized use to cause kernel error. Published: November 18, 2024; 9:16:32 PM -0500 |
V4.0:(not available) V3.1: 5.5 MEDIUM V2.0:(not available) |
CVE-2024-50299 |
In the Linux kernel, the following vulnerability has been resolved: sctp: properly validate chunk size in sctp_sf_ootb() A size validation fix similar to that in Commit 50619dbf8db7 ("sctp: add size validation when walking chunks") is also required in sctp_sf_ootb() to address a crash reported by syzbot: BUG: KMSAN: uninit-value in sctp_sf_ootb+0x7f5/0xce0 net/sctp/sm_statefuns.c:3712 sctp_sf_ootb+0x7f5/0xce0 net/sctp/sm_statefuns.c:3712 sctp_do_sm+0x181/0x93d0 net/sctp/sm_sideeffect.c:1166 sctp_endpoint_bh_rcv+0xc38/0xf90 net/sctp/endpointola.c:407 sctp_inq_push+0x2ef/0x380 net/sctp/inqueue.c:88 sctp_rcv+0x3831/0x3b20 net/sctp/input.c:243 sctp4_rcv+0x42/0x50 net/sctp/protocol.c:1159 ip_protocol_deliver_rcu+0xb51/0x13d0 net/ipv4/ip_input.c:205 ip_local_deliver_finish+0x336/0x500 net/ipv4/ip_input.c:233 Published: November 18, 2024; 9:16:32 PM -0500 |
V4.0:(not available) V3.1: 5.5 MEDIUM V2.0:(not available) |
CVE-2024-50298 |
In the Linux kernel, the following vulnerability has been resolved: net: enetc: allocate vf_state during PF probes In the previous implementation, vf_state is allocated memory only when VF is enabled. However, net_device_ops::ndo_set_vf_mac() may be called before VF is enabled to configure the MAC address of VF. If this is the case, enetc_pf_set_vf_mac() will access vf_state, resulting in access to a null pointer. The simplified error log is as follows. root@ls1028ardb:~# ip link set eno0 vf 1 mac 00:0c:e7:66:77:89 [ 173.543315] Unable to handle kernel NULL pointer dereference at virtual address 0000000000000004 [ 173.637254] pc : enetc_pf_set_vf_mac+0x3c/0x80 Message from sy [ 173.641973] lr : do_setlink+0x4a8/0xec8 [ 173.732292] Call trace: [ 173.734740] enetc_pf_set_vf_mac+0x3c/0x80 [ 173.738847] __rtnl_newlink+0x530/0x89c [ 173.742692] rtnl_newlink+0x50/0x7c [ 173.746189] rtnetlink_rcv_msg+0x128/0x390 [ 173.750298] netlink_rcv_skb+0x60/0x130 [ 173.754145] rtnetlink_rcv+0x18/0x24 [ 173.757731] netlink_unicast+0x318/0x380 [ 173.761665] netlink_sendmsg+0x17c/0x3c8 Published: November 18, 2024; 9:16:31 PM -0500 |
V4.0:(not available) V3.1: 5.5 MEDIUM V2.0:(not available) |