U.S. flag   An official website of the United States government
Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Https

Secure .gov websites use HTTPS
A lock (Dot gov) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

CVE-2024-35803 Detail

Description

In the Linux kernel, the following vulnerability has been resolved: x86/efistub: Call mixed mode boot services on the firmware's stack Normally, the EFI stub calls into the EFI boot services using the stack that was live when the stub was entered. According to the UEFI spec, this stack needs to be at least 128k in size - this might seem large but all asynchronous processing and event handling in EFI runs from the same stack and so quite a lot of space may be used in practice. In mixed mode, the situation is a bit different: the bootloader calls the 32-bit EFI stub entry point, which calls the decompressor's 32-bit entry point, where the boot stack is set up, using a fixed allocation of 16k. This stack is still in use when the EFI stub is started in 64-bit mode, and so all calls back into the EFI firmware will be using the decompressor's limited boot stack. Due to the placement of the boot stack right after the boot heap, any stack overruns have gone unnoticed. However, commit 5c4feadb0011983b ("x86/decompressor: Move global symbol references to C code") moved the definition of the boot heap into C code, and now the boot stack is placed right at the base of BSS, where any overruns will corrupt the end of the .data section. While it would be possible to work around this by increasing the size of the boot stack, doing so would affect all x86 systems, and mixed mode systems are a tiny (and shrinking) fraction of the x86 installed base. So instead, record the firmware stack pointer value when entering from the 32-bit firmware, and switch to this stack every time a EFI boot service call is made.


Metrics

NVD enrichment efforts reference publicly available information to associate vector strings. CVSS information contributed by other sources is also displayed.
CVSS 4.0 Severity and Vector Strings:

NIST CVSS score
NIST: NVD
N/A
NVD assessment not yet provided.

References to Advisories, Solutions, and Tools

By selecting these links, you will be leaving NIST webspace. We have provided these links to other web sites because they may have information that would be of interest to you. No inferences should be drawn on account of other sites being referenced, or not, from this page. There may be other web sites that are more appropriate for your purpose. NIST does not necessarily endorse the views expressed, or concur with the facts presented on these sites. Further, NIST does not endorse any commercial products that may be mentioned on these sites. Please address comments about this page to nvd@nist.gov.

Hyperlink Resource
https://git.kernel.org/stable/c/2149f8a56e2ed345c7a4d022a79f6b8fc53ae926
https://git.kernel.org/stable/c/725351c036452b7db5771a7bed783564bc4b99cc
https://git.kernel.org/stable/c/930775060ca348b8665f60eef14b204172d14f31
https://git.kernel.org/stable/c/cefcd4fe2e3aaf792c14c9e56dab89e3d7a65d02
https://git.kernel.org/stable/c/fba7ee7187581b5bc222003e73e2592b398bb06d

Weakness Enumeration

CWE-ID CWE Name Source

Change History

2 change records found show changes

Quick Info

CVE Dictionary Entry:
CVE-2024-35803
NVD Published Date:
05/17/2024
NVD Last Modified:
05/17/2024
Source:
kernel.org