U.S. flag   An official website of the United States government
Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Https

Secure .gov websites use HTTPS
A lock (Dot gov) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

NOTICE UPDATED - May, 29th 2024

The NVD has a new announcement page with status updates, news, and how to stay connected!

CVE-2021-47275 Detail

Description

In the Linux kernel, the following vulnerability has been resolved: bcache: avoid oversized read request in cache missing code path In the cache missing code path of cached device, if a proper location from the internal B+ tree is matched for a cache miss range, function cached_dev_cache_miss() will be called in cache_lookup_fn() in the following code block, [code block 1] 526 unsigned int sectors = KEY_INODE(k) == s->iop.inode 527 ? min_t(uint64_t, INT_MAX, 528 KEY_START(k) - bio->bi_iter.bi_sector) 529 : INT_MAX; 530 int ret = s->d->cache_miss(b, s, bio, sectors); Here s->d->cache_miss() is the call backfunction pointer initialized as cached_dev_cache_miss(), the last parameter 'sectors' is an important hint to calculate the size of read request to backing device of the missing cache data. Current calculation in above code block may generate oversized value of 'sectors', which consequently may trigger 2 different potential kernel panics by BUG() or BUG_ON() as listed below, 1) BUG_ON() inside bch_btree_insert_key(), [code block 2] 886 BUG_ON(b->ops->is_extents && !KEY_SIZE(k)); 2) BUG() inside biovec_slab(), [code block 3] 51 default: 52 BUG(); 53 return NULL; All the above panics are original from cached_dev_cache_miss() by the oversized parameter 'sectors'. Inside cached_dev_cache_miss(), parameter 'sectors' is used to calculate the size of data read from backing device for the cache missing. This size is stored in s->insert_bio_sectors by the following lines of code, [code block 4] 909 s->insert_bio_sectors = min(sectors, bio_sectors(bio) + reada); Then the actual key inserting to the internal B+ tree is generated and stored in s->iop.replace_key by the following lines of code, [code block 5] 911 s->iop.replace_key = KEY(s->iop.inode, 912 bio->bi_iter.bi_sector + s->insert_bio_sectors, 913 s->insert_bio_sectors); The oversized parameter 'sectors' may trigger panic 1) by BUG_ON() from the above code block. And the bio sending to backing device for the missing data is allocated with hint from s->insert_bio_sectors by the following lines of code, [code block 6] 926 cache_bio = bio_alloc_bioset(GFP_NOWAIT, 927 DIV_ROUND_UP(s->insert_bio_sectors, PAGE_SECTORS), 928 &dc->disk.bio_split); The oversized parameter 'sectors' may trigger panic 2) by BUG() from the agove code block. Now let me explain how the panics happen with the oversized 'sectors'. In code block 5, replace_key is generated by macro KEY(). From the definition of macro KEY(), [code block 7] 71 #define KEY(inode, offset, size) \ 72 ((struct bkey) { \ 73 .high = (1ULL << 63) | ((__u64) (size) << 20) | (inode), \ 74 .low = (offset) \ 75 }) Here 'size' is 16bits width embedded in 64bits member 'high' of struct bkey. But in code block 1, if "KEY_START(k) - bio->bi_iter.bi_sector" is very probably to be larger than (1<<16) - 1, which makes the bkey size calculation in code block 5 is overflowed. In one bug report the value of parameter 'sectors' is 131072 (= 1 << 17), the overflowed 'sectors' results the overflowed s->insert_bio_sectors in code block 4, then makes size field of s->iop.replace_key to be 0 in code block 5. Then the 0- sized s->iop.replace_key is inserted into the internal B+ tree as cache missing check key (a special key to detect and avoid a racing between normal write request and cache missing read request) as, [code block 8] 915 ret = bch_btree_insert_check_key(b, &s->op, &s->iop.replace_key); Then the 0-sized s->iop.replace_key as 3rd parameter triggers the bkey size check BUG_ON() in code block 2, and causes the kernel panic 1). Another ke ---truncated---


Metrics

NVD enrichment efforts reference publicly available information to associate vector strings. CVSS information contributed by other sources is also displayed.
CVSS 4.0 Severity and Vector Strings:

NIST CVSS score
NIST: NVD
N/A
NVD assessment not yet provided.

References to Advisories, Solutions, and Tools

By selecting these links, you will be leaving NIST webspace. We have provided these links to other web sites because they may have information that would be of interest to you. No inferences should be drawn on account of other sites being referenced, or not, from this page. There may be other web sites that are more appropriate for your purpose. NIST does not necessarily endorse the views expressed, or concur with the facts presented on these sites. Further, NIST does not endorse any commercial products that may be mentioned on these sites. Please address comments about this page to nvd@nist.gov.

Hyperlink Resource
https://git.kernel.org/stable/c/41fe8d088e96472f63164e213de44ec77be69478
https://git.kernel.org/stable/c/555002a840ab88468e252b0eedf0b05e2ce7099c

Weakness Enumeration

CWE-ID CWE Name Source

Change History

2 change records found show changes

Quick Info

CVE Dictionary Entry:
CVE-2021-47275
NVD Published Date:
05/21/2024
NVD Last Modified:
05/21/2024
Source:
kernel.org