CVE-2021-47465 Detail
Awaiting Analysis
This vulnerability is currently awaiting analysis. DescriptionIn the Linux kernel, the following vulnerability has been resolved: KVM: PPC: Book3S HV: Fix stack handling in idle_kvm_start_guest() In commit 10d91611f426 ("powerpc/64s: Reimplement book3s idle code in C") kvm_start_guest() became idle_kvm_start_guest(). The old code allocated a stack frame on the emergency stack, but didn't use the frame to store anything, and also didn't store anything in its caller's frame. idle_kvm_start_guest() on the other hand is written more like a normal C function, it creates a frame on entry, and also stores CR/LR into its callers frame (per the ABI). The problem is that there is no caller frame on the emergency stack. The emergency stack for a given CPU is allocated with: paca_ptrs[i]->emergency_sp = alloc_stack(limit, i) + THREAD_SIZE; So emergency_sp actually points to the first address above the emergency stack allocation for a given CPU, we must not store above it without first decrementing it to create a frame. This is different to the regular kernel stack, paca->kstack, which is initialised to point at an initial frame that is ready to use. idle_kvm_start_guest() stores the backchain, CR and LR all of which write outside the allocation for the emergency stack. It then creates a stack frame and saves the non-volatile registers. Unfortunately the frame it creates is not large enough to fit the non-volatiles, and so the saving of the non-volatile registers also writes outside the emergency stack allocation. The end result is that we corrupt whatever is at 0-24 bytes, and 112-248 bytes above the emergency stack allocation. In practice this has gone unnoticed because the memory immediately above the emergency stack happens to be used for other stack allocations, either another CPUs mc_emergency_sp or an IRQ stack. See the order of calls to irqstack_early_init() and emergency_stack_init(). The low addresses of another stack are the top of that stack, and so are only used if that stack is under extreme pressue, which essentially never happens in practice - and if it did there's a high likelyhood we'd crash due to that stack overflowing. Still, we shouldn't be corrupting someone else's stack, and it is purely luck that we aren't corrupting something else. To fix it we save CR/LR into the caller's frame using the existing r1 on entry, we then create a SWITCH_FRAME_SIZE frame (which has space for pt_regs) on the emergency stack with the backchain pointing to the existing stack, and then finally we switch to the new frame on the emergency stack. Metrics
NVD enrichment efforts reference publicly available information to associate
vector strings. CVSS information contributed by other sources is also
displayed.
CVSS 4.0 Severity and Vector Strings:
References to Advisories, Solutions, and ToolsBy selecting these links, you will be leaving NIST webspace. We have provided these links to other web sites because they may have information that would be of interest to you. No inferences should be drawn on account of other sites being referenced, or not, from this page. There may be other web sites that are more appropriate for your purpose. NIST does not necessarily endorse the views expressed, or concur with the facts presented on these sites. Further, NIST does not endorse any commercial products that may be mentioned on these sites. Please address comments about this page to nvd@nist.gov. Weakness Enumeration
Quick InfoCVE Dictionary Entry:CVE-2021-47465 NVD Published Date: 05/22/2024 NVD Last Modified: 11/07/2024 Source: kernel.org |