You are viewing this page in an unauthorized frame window.
This is a potential security issue, you are being redirected to
https://nvd.nist.gov
An official website of the United States government
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock () or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.
Recent x86 CPUs offer functionality named Control-flow Enforcement
Technology (CET). A sub-feature of this are Shadow Stacks (CET-SS).
CET-SS is a hardware feature designed to protect against Return Oriented
Programming attacks. When enabled, traditional stacks holding both data
and return addresses are accompanied by so called "shadow stacks",
holding little more than return addresses. Shadow stacks aren't
writable by normal instructions, and upon function returns their
contents are used to check for possible manipulation of a return address
coming from the traditional stack.
In particular certain memory accesses need intercepting by Xen. In
various cases the necessary emulation involves kind of replaying of
the instruction. Such replaying typically involves filling and then
invoking of a stub. Such a replayed instruction may raise an
exceptions, which is expected and dealt with accordingly.
Unfortunately the interaction of both of the above wasn't right:
Recovery involves removal of a call frame from the (traditional) stack.
The counterpart of this operation for the shadow stack was missing.
Metrics
NVD enrichment efforts reference publicly available information to associate
vector strings. CVSS information contributed by other sources is also
displayed.
By selecting these links, you will be leaving NIST webspace.
We have provided these links to other web sites because they
may have information that would be of interest to you. No
inferences should be drawn on account of other sites being
referenced, or not, from this page. There may be other web
sites that are more appropriate for your purpose. NIST does
not necessarily endorse the views expressed, or concur with
the facts presented on these sites. Further, NIST does not
endorse any commercial products that may be mentioned on
these sites. Please address comments about this page to [email protected].
CVE: https://lists.fedoraproject.org/archives/list/[email protected]/message/ZON4TLXG7TG4A2XZG563JMVTGQW4SF3A/ Types: Mailing List, Third Party Advisory
Xen Project: https://lists.fedoraproject.org/archives/list/[email protected]/message/ZON4TLXG7TG4A2XZG563JMVTGQW4SF3A/ Types: Mailing List, Third Party Advisory
Recent x86 CPUs offer functionality named Control-flow Enforcement
Technology (CET). A sub-feature of this are Shadow Stacks (CET-SS).
CET-SS is a hardware feature designed to protect against Return Oriented
Programming attacks. When enabled, traditional stacks holding both data
and return addresses are accompanied by so called "shadow stacks",
holding little more than return addresses. Shadow stacks aren't
writable by normal instructions, and upon function returns their
contents are used to check for possible manipulation of a return address
coming from the traditional stack.
In particular certain memory accesses need intercepting by Xen. In
various cases the necessary emulation involves kind of replaying of
the instruction. Such replaying typically involves filling and then
invoking of a stub. Such a replayed instruction may raise an
exceptions, which is expected and dealt with accordingly.
Unfortunately the interaction of both of the above wasn't right:
Recovery involves removal of a call frame from the (traditional) stack.
The counterpart of this operation for the shadow stack was missing.
Recent x86 CPUs offer functionality named Control-flow Enforcement
Technology (CET). A sub-feature of this are Shadow Stacks (CET-SS).
CET-SS is a hardware feature designed to protect against Return Oriented
Programming attacks. When enabled, traditional stacks holding both data
and return addresses are accompanied by so called "shadow stacks",
holding little more than return addresses. Shadow stacks aren't
writable by normal instructions, and upon function returns their
contents are used to check for possible manipulation of a return address
coming from the traditional stack.
In particular certain memory accesses need intercepting by Xen. In
various cases the necessary emulation involves kind of replaying of
the instruction. Such replaying typically involves filling and then
invoking of a stub. Such a replayed instruction may raise an
exceptions, which is expected and dealt with accordingly.
Unfortunately the interaction of both of the above wasn't right:
Recovery involves removal of a call frame from the (traditional) stack.
The counterpart of this operation for the shadow stack was missing.
New CVE Received from Xen Project3/20/2024 7:15:08 AM
Action
Type
Old Value
New Value
Added
Description
Recent x86 CPUs offer functionality named Control-flow Enforcement
Technology (CET). A sub-feature of this are Shadow Stacks (CET-SS).
CET-SS is a hardware feature designed to protect against Return Oriented
Programming attacks. When enabled, traditional stacks holding both data
and return addresses are accompanied by so called "shadow stacks",
holding little more than return addresses. Shadow stacks aren't
writable by normal instructions, and upon function returns their
contents are used to check for possible manipulation of a return address
coming from the traditional stack.
In particular certain memory accesses need intercepting by Xen. In
various cases the necessary emulation involves kind of replaying of
the instruction. Such replaying typically involves filling and then
invoking of a stub. Such a replayed instruction may raise an
exceptions, which is expected and dealt with accordingly.
Unfortunately the interaction of both of the above wasn't right:
Recovery involves removal of a call frame from the (traditional) stack.
The counterpart of this operation for the shadow stack was missing.