U.S. flag   An official website of the United States government
Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Https

Secure .gov websites use HTTPS
A lock (Dot gov) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

CVE-2023-53685 Detail

Description

In the Linux kernel, the following vulnerability has been resolved: tun: Fix memory leak for detached NAPI queue. syzkaller reported [0] memory leaks of sk and skb related to the TUN device with no repro, but we can reproduce it easily with: struct ifreq ifr = {} int fd_tun, fd_tmp; char buf[4] = {}; fd_tun = openat(AT_FDCWD, "/dev/net/tun", O_WRONLY, 0); ifr.ifr_flags = IFF_TUN | IFF_NAPI | IFF_MULTI_QUEUE; ioctl(fd_tun, TUNSETIFF, &ifr); ifr.ifr_flags = IFF_DETACH_QUEUE; ioctl(fd_tun, TUNSETQUEUE, &ifr); fd_tmp = socket(AF_PACKET, SOCK_PACKET, 0); ifr.ifr_flags = IFF_UP; ioctl(fd_tmp, SIOCSIFFLAGS, &ifr); write(fd_tun, buf, sizeof(buf)); close(fd_tun); If we enable NAPI and multi-queue on a TUN device, we can put skb into tfile->sk.sk_write_queue after the queue is detached. We should prevent it by checking tfile->detached before queuing skb. Note this must be done under tfile->sk.sk_write_queue.lock because write() and ioctl(IFF_DETACH_QUEUE) can run concurrently. Otherwise, there would be a small race window: write() ioctl(IFF_DETACH_QUEUE) `- tun_get_user `- __tun_detach |- if (tfile->detached) |- tun_disable_queue | `-> false | `- tfile->detached = tun | `- tun_queue_purge |- spin_lock_bh(&queue->lock) `- __skb_queue_tail(queue, skb) Another solution is to call tun_queue_purge() when closing and reattaching the detached queue, but it could paper over another problems. Also, we do the same kind of test for IFF_NAPI_FRAGS. [0]: unreferenced object 0xffff88801edbc800 (size 2048): comm "syz-executor.1", pid 33269, jiffies 4295743834 (age 18.756s) hex dump (first 32 bytes): 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 00 00 07 40 00 00 00 00 00 00 00 00 00 00 00 00 ...@............ backtrace: [<000000008c16ea3d>] __do_kmalloc_node mm/slab_common.c:965 [inline] [<000000008c16ea3d>] __kmalloc+0x4a/0x130 mm/slab_common.c:979 [<000000003addde56>] kmalloc include/linux/slab.h:563 [inline] [<000000003addde56>] sk_prot_alloc+0xef/0x1b0 net/core/sock.c:2035 [<000000003e20621f>] sk_alloc+0x36/0x2f0 net/core/sock.c:2088 [<0000000028e43843>] tun_chr_open+0x3d/0x190 drivers/net/tun.c:3438 [<000000001b0f1f28>] misc_open+0x1a6/0x1f0 drivers/char/misc.c:165 [<000000004376f706>] chrdev_open+0x111/0x300 fs/char_dev.c:414 [<00000000614d379f>] do_dentry_open+0x2f9/0x750 fs/open.c:920 [<000000008eb24774>] do_open fs/namei.c:3636 [inline] [<000000008eb24774>] path_openat+0x143f/0x1a30 fs/namei.c:3791 [<00000000955077b5>] do_filp_open+0xce/0x1c0 fs/namei.c:3818 [<00000000b78973b0>] do_sys_openat2+0xf0/0x260 fs/open.c:1356 [<00000000057be699>] do_sys_open fs/open.c:1372 [inline] [<00000000057be699>] __do_sys_openat fs/open.c:1388 [inline] [<00000000057be699>] __se_sys_openat fs/open.c:1383 [inline] [<00000000057be699>] __x64_sys_openat+0x83/0xf0 fs/open.c:1383 [<00000000a7d2182d>] do_syscall_x64 arch/x86/entry/common.c:50 [inline] [<00000000a7d2182d>] do_syscall_64+0x3c/0x90 arch/x86/entry/common.c:80 [<000000004cc4e8c4>] entry_SYSCALL_64_after_hwframe+0x72/0xdc unreferenced object 0xffff88802f671700 (size 240): comm "syz-executor.1", pid 33269, jiffies 4295743854 (age 18.736s) hex dump (first 32 bytes): 68 c9 db 1e 80 88 ff ff 68 c9 db 1e 80 88 ff ff h.......h....... 00 c0 7b 2f 80 88 ff ff 00 c8 db 1e 80 88 ff ff ..{/............ backtrace: [<00000000e9d9fdb6>] __alloc_skb+0x223/0x250 net/core/skbuff.c:644 [<000000002c3e4e0b>] alloc_skb include/linux/skbuff.h:1288 [inline] [<000000002c3e4e0b>] alloc_skb_with_frags+0x6f/0x350 net/core/skbuff.c:6378 [<00000000825f98d7>] sock_alloc_send_pskb+0x3ac/0x3e0 net/core/sock.c:2729 [<00000000e9eb3df3>] tun_alloc_skb drivers/net/tun.c:1529 [inline] [< ---truncated---


Metrics

NVD enrichment efforts reference publicly available information to associate vector strings. CVSS information contributed by other sources is also displayed.
CVSS 4.0 Severity and Vector Strings:

NIST CVSS score
NIST: NVD
N/A
NVD assessment not yet provided.

References to Advisories, Solutions, and Tools

By selecting these links, you will be leaving NIST webspace. We have provided these links to other web sites because they may have information that would be of interest to you. No inferences should be drawn on account of other sites being referenced, or not, from this page. There may be other web sites that are more appropriate for your purpose. NIST does not necessarily endorse the views expressed, or concur with the facts presented on these sites. Further, NIST does not endorse any commercial products that may be mentioned on these sites. Please address comments about this page to [email protected].

URL Source(s) Tag(s)
https://git.kernel.org/stable/c/0d20210a190f76db9ec35ee4e0fc77e6c7a148f5 kernel.org
https://git.kernel.org/stable/c/82b2bc279467c875ec36f8ef820f00997c2a4e8e kernel.org
https://git.kernel.org/stable/c/9cae243b9ae25adfe468cd47ceca591f6725b79c kernel.org

Weakness Enumeration

CWE-ID CWE Name Source

Change History

1 change records found show changes

Quick Info

CVE Dictionary Entry:
CVE-2023-53685
NVD Published Date:
10/07/2025
NVD Last Modified:
10/07/2025
Source:
kernel.org