You are viewing this page in an unauthorized frame window.
This is a potential security issue, you are being redirected to
https://nvd.nist.gov
An official website of the United States government
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock () or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.
In the Linux kernel, the following vulnerability has been resolved:
mm: swap: fix race between free_swap_and_cache() and swapoff()
There was previously a theoretical window where swapoff() could run and
teardown a swap_info_struct while a call to free_swap_and_cache() was
running in another thread. This could cause, amongst other bad
possibilities, swap_page_trans_huge_swapped() (called by
free_swap_and_cache()) to access the freed memory for swap_map.
This is a theoretical problem and I haven't been able to provoke it from a
test case. But there has been agreement based on code review that this is
possible (see link below).
Fix it by using get_swap_device()/put_swap_device(), which will stall
swapoff(). There was an extra check in _swap_info_get() to confirm that
the swap entry was not free. This isn't present in get_swap_device()
because it doesn't make sense in general due to the race between getting
the reference and swapoff. So I've added an equivalent check directly in
free_swap_and_cache().
Details of how to provoke one possible issue (thanks to David Hildenbrand
for deriving this):
--8<-----
__swap_entry_free() might be the last user and result in
"count == SWAP_HAS_CACHE".
swapoff->try_to_unuse() will stop as soon as soon as si->inuse_pages==0.
So the question is: could someone reclaim the folio and turn
si->inuse_pages==0, before we completed swap_page_trans_huge_swapped().
Imagine the following: 2 MiB folio in the swapcache. Only 2 subpages are
still references by swap entries.
Process 1 still references subpage 0 via swap entry.
Process 2 still references subpage 1 via swap entry.
Process 1 quits. Calls free_swap_and_cache().
-> count == SWAP_HAS_CACHE
[then, preempted in the hypervisor etc.]
Process 2 quits. Calls free_swap_and_cache().
-> count == SWAP_HAS_CACHE
Process 2 goes ahead, passes swap_page_trans_huge_swapped(), and calls
__try_to_reclaim_swap().
__try_to_reclaim_swap()->folio_free_swap()->delete_from_swap_cache()->
put_swap_folio()->free_swap_slot()->swapcache_free_entries()->
swap_entry_free()->swap_range_free()->
...
WRITE_ONCE(si->inuse_pages, si->inuse_pages - nr_entries);
What stops swapoff to succeed after process 2 reclaimed the swap cache
but before process1 finished its call to swap_page_trans_huge_swapped()?
--8<-----
Metrics
NVD enrichment efforts reference publicly available information to associate
vector strings. CVSS information contributed by other sources is also
displayed.
By selecting these links, you will be leaving NIST webspace.
We have provided these links to other web sites because they
may have information that would be of interest to you. No
inferences should be drawn on account of other sites being
referenced, or not, from this page. There may be other web
sites that are more appropriate for your purpose. NIST does
not necessarily endorse the views expressed, or concur with
the facts presented on these sites. Further, NIST does not
endorse any commercial products that may be mentioned on
these sites. Please address comments about this page to [email protected].
OR
*cpe:2.3:o:debian:debian_linux:10.0:*:*:*:*:*:*:*
Added
CPE Configuration
OR
*cpe:2.3:o:linux:linux_kernel:*:*:*:*:*:*:*:* versions from (including) 6.2 up to (excluding) 6.6.24
*cpe:2.3:o:linux:linux_kernel:*:*:*:*:*:*:*:* versions from (including) 6.7 up to (excluding) 6.7.12
*cpe:2.3:o:linux:linux_kernel:*:*:*:*:*:*:*:* versions from (including) 5.11 up to (excluding) 5.15.154
*cpe:2.3:o:linux:linux_kernel:*:*:*:*:*:*:*:* versions from (including) 5.16 up to (excluding) 6.1.84
*cpe:2.3:o:linux:linux_kernel:*:*:*:*:*:*:*:* versions from (including) 6.8 up to (excluding) 6.8.3
*cpe:2.3:o:linux:linux_kernel:*:*:*:*:*:*:*:* versions from (including) 4.11 up to (excluding) 5.10.215
In the Linux kernel, the following vulnerability has been resolved:
mm: swap: fix race between free_swap_and_cache() and swapoff()
There was previously a theoretical window where swapoff() could run and
teardown a swap_info_struct while a call to free_swap_and_cache() was
running in another thread. This could cause, amongst other bad
possibilities, swap_page_trans_huge_swapped() (called by
free_swap_and_cache()) to access the freed memory for swap_map.
This is a theoretical problem and I haven't been able to provoke it from a
test case. But there has been agreement based on code review that this is
possible (see link below).
Fix it by using get_swap_device()/put_swap_device(), which will stall
swapoff(). There was an extra check in _swap_info_get() to confirm that
the swap entry was not free. This isn't present in get_swap_device()
because it doesn't make sense in general due to the race between getting
the reference and swapoff. So I've added an equivalent check directly in
free_swap_and_cache().
Details of how to provoke one possible issue (thanks to David Hildenbrand
for deriving this):
--8<-----
__swap_entry_free() might be the last user and result in
"count == SWAP_HAS_CACHE".
swapoff->try_to_unuse() will stop as soon as soon as si->inuse_pages==0.
So the question is: could someone reclaim the folio and turn
si->inuse_pages==0, before we completed swap_page_trans_huge_swapped().
Imagine the following: 2 MiB folio in the swapcache. Only 2 subpages are
still references by swap entries.
Process 1 still references subpage 0 via swap entry.
Process 2 still references subpage 1 via swap entry.
Process 1 quits. Calls free_swap_and_cache().
-> count == SWAP_HAS_CACHE
[then, preempted in the hypervisor etc.]
Process 2 quits. Calls free_swap_and_cache().
-> count == SWAP_HAS_CACHE
Process 2 goes ahead, passes swap_page_trans_huge_swapped(), and calls
__try_to_reclaim_swap().
__try_to_reclaim_swap()->folio_free_swap()->delete_from_swap_cache()->
put_swap_folio()->free_swap_slot()->swapcache_free_ent