You are viewing this page in an unauthorized frame window.
This is a potential security issue, you are being redirected to
https://nvd.nist.gov
An official website of the United States government
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock () or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.
In the Linux kernel, the following vulnerability has been resolved:
vfs: Don't evict inode under the inode lru traversing context
The inode reclaiming process(See function prune_icache_sb) collects all
reclaimable inodes and mark them with I_FREEING flag at first, at that
time, other processes will be stuck if they try getting these inodes
(See function find_inode_fast), then the reclaiming process destroy the
inodes by function dispose_list(). Some filesystems(eg. ext4 with
ea_inode feature, ubifs with xattr) may do inode lookup in the inode
evicting callback function, if the inode lookup is operated under the
inode lru traversing context, deadlock problems may happen.
Case 1: In function ext4_evict_inode(), the ea inode lookup could happen
if ea_inode feature is enabled, the lookup process will be stuck
under the evicting context like this:
1. File A has inode i_reg and an ea inode i_ea
2. getfattr(A, xattr_buf) // i_ea is added into lru // lru->i_ea
3. Then, following three processes running like this:
PA PB
echo 2 > /proc/sys/vm/drop_caches
shrink_slab
prune_dcache_sb
// i_reg is added into lru, lru->i_ea->i_reg
prune_icache_sb
list_lru_walk_one
inode_lru_isolate
i_ea->i_state |= I_FREEING // set inode state
inode_lru_isolate
__iget(i_reg)
spin_unlock(&i_reg->i_lock)
spin_unlock(lru_lock)
rm file A
i_reg->nlink = 0
iput(i_reg) // i_reg->nlink is 0, do evict
ext4_evict_inode
ext4_xattr_delete_inode
ext4_xattr_inode_dec_ref_all
ext4_xattr_inode_iget
ext4_iget(i_ea->i_ino)
iget_locked
find_inode_fast
__wait_on_freeing_inode(i_ea) ----? AA deadlock
dispose_list // cannot be executed by prune_icache_sb
wake_up_bit(&i_ea->i_state)
Case 2: In deleted inode writing function ubifs_jnl_write_inode(), file
deleting process holds BASEHD's wbuf->io_mutex while getting the
xattr inode, which could race with inode reclaiming process(The
reclaiming process could try locking BASEHD's wbuf->io_mutex in
inode evicting function), then an ABBA deadlock problem would
happen as following:
1. File A has inode ia and a xattr(with inode ixa), regular file B has
inode ib and a xattr.
2. getfattr(A, xattr_buf) // ixa is added into lru // lru->ixa
3. Then, following three processes running like this:
PA PB PC
echo 2 > /proc/sys/vm/drop_caches
shrink_slab
prune_dcache_sb
// ib and ia are added into lru, lru->ixa->ib->ia
prune_icache_sb
list_lru_walk_one
inode_lru_isolate
ixa->i_state |= I_FREEING // set inode state
inode_lru_isolate
__iget(ib)
spin_unlock(&ib->i_lock)
spin_unlock(lru_lock)
rm file B
ib->nlink = 0
rm file A
iput(ia)
ubifs_evict_inode(ia)
ubifs_jnl_delete_inode(ia)
ubifs_jnl_write_inode(ia)
make_reservation(BASEHD) // Lock wbuf->io_mutex
ubifs_iget(ixa->i_ino)
iget_locked
find_inode_fast
__wait_on_freeing_inode(ixa)
| iput(ib) // ib->nlink is 0, do evict
| ubifs_evict_inode
| ubifs_jnl_delete_inode(ib)
? ubifs_jnl_write_inode
ABBA deadlock ?-----make_reservation(BASEHD)
dispose_list // cannot be executed by prune_icache_sb
wake_up_bit(&ixa->i_state)
Fix the possible deadlock by using new inode state flag I_LRU_ISOLATING
to pin the inode in memory while inode_lru_isolate(
---truncated---
Metrics
NVD enrichment efforts reference publicly available information to associate
vector strings. CVSS information contributed by other sources is also
displayed.
By selecting these links, you will be leaving NIST webspace.
We have provided these links to other web sites because they
may have information that would be of interest to you. No
inferences should be drawn on account of other sites being
referenced, or not, from this page. There may be other web
sites that are more appropriate for your purpose. NIST does
not necessarily endorse the views expressed, or concur with
the facts presented on these sites. Further, NIST does not
endorse any commercial products that may be mentioned on
these sites. Please address comments about this page to nvd@nist.gov.
OR
*cpe:2.3:o:linux:linux_kernel:*:*:*:*:*:*:*:* versions from (including) 4.13 up to (excluding) 5.4.283
*cpe:2.3:o:linux:linux_kernel:*:*:*:*:*:*:*:* versions from (including) 5.5 up to (excluding) 5.10.225
*cpe:2.3:o:linux:linux_kernel:*:*:*:*:*:*:*:* versions from (including) 5.11 up to (excluding) 5.15.166
*cpe:2.3:o:linux:linux_kernel:*:*:*:*:*:*:*:* versions from (including) 5.16 up to (excluding) 6.1.107
*cpe:2.3:o:linux:linux_kernel:*:*:*:*:*:*:*:* versions from
In the Linux kernel, the following vulnerability has been resolved:
vfs: Don't evict inode under the inode lru traversing context
The inode reclaiming process(See function prune_icache_sb) collects all
reclaimable inodes and mark them with I_FREEING flag at first, at that
time, other processes will be stuck if they try getting these inodes
(See function find_inode_fast), then the reclaiming process destroy the
inodes by function dispose_list(). Some filesystems(eg. ext4 with
ea_inode feature,
In the Linux kernel, the following vulnerability has been resolved:
vfs: Don't evict inode under the inode lru traversing context
The inode reclaiming process(See function prune_icache_sb) collects all
reclaimable inodes and mark them with I_FREEING flag at first, at that
time, other processes will be stuck if they try getting these inodes
(See function find_inode_fast), then the reclaiming process destroy the
inodes by function dispose_list(). Some filesystems(eg. ext4 with
ea_inode feature,
Changed
Reference Type
https://git.kernel.org/stable/c/03880af02a78bc9a98b5a581f529cf709c88a9b8 No Types Assigned
In the Linux kernel, the following vulnerability has been resolved:
vfs: Don't evict inode under the inode lru traversing context
The inode reclaiming process(See function prune_icache_sb) collects all
reclaimable inodes and mark them with I_FREEING flag at first, at that
time, other processes will be stuck if they try getting these inodes
(See function find_inode_fast), then the reclaiming process destroy the
inodes by function dispose_list(). Some filesystems(eg. ext4 with
ea_inode feature,
In the Linux kernel, the following vulnerability has been resolved:
vfs: Don't evict inode under the inode lru traversing context
The inode reclaiming process(See function prune_icache_sb) collects all
reclaimable inodes and mark them with I_FREEING flag at first, at that
time, other processes will be stuck if they try getting these inodes
(See function find_inode_fast), then the reclaiming process destroy the
inodes by function dispose_list(). Some filesystems(eg. ext4 with
ea_inode feature,
In the Linux kernel, the following vulnerability has been resolved:
vfs: Don't evict inode under the inode lru traversing context
The inode reclaiming process(See function prune_icache_sb) collects all
reclaimable inodes and mark them with I_FREEING flag at first, at that
time, other processes will be stuck if they try getting these inodes
(See function find_inode_fast), then the reclaiming process destroy the
inodes by function dispose_list(). Some filesystems(eg. ext4 with
ea_inode feature,