You are viewing this page in an unauthorized frame window.
This is a potential security issue, you are being redirected to
https://nvd.nist.gov
An official website of the United States government
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock () or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.
This CVE has been marked Rejected in the CVE List. These CVEs are stored in the NVD, but do not show up in search results by default.
Description
Rejected reason: This CVE ID has been rejected or withdrawn by its CVE Numbering Authority.
Metrics
NVD enrichment efforts reference publicly available information to associate
vector strings. CVSS information contributed by other sources is also
displayed.
By selecting these links, you will be leaving NIST webspace.
We have provided these links to other web sites because they
may have information that would be of interest to you. No
inferences should be drawn on account of other sites being
referenced, or not, from this page. There may be other web
sites that are more appropriate for your purpose. NIST does
not necessarily endorse the views expressed, or concur with
the facts presented on these sites. Further, NIST does not
endorse any commercial products that may be mentioned on
these sites. Please address comments about this page to [email protected].
In the Linux kernel, the following vulnerability has been resolved:
ext4: fix race in buffer_head read fault injection
When I enabled ext4 debug for fault injection testing, I encountered the
following warning:
EXT4-fs error (device sda): ext4_read_inode_bitmap:201: comm fsstress:
Cannot read inode bitmap - block_group = 8, inode_bitmap = 1051
WARNING: CPU: 0 PID: 511 at fs/buffer.c:1181 mark_buffer_dirty+0x1b3/0x1d0
The root cause of the issue lies in the improper implementation of ext4's
buffer_head read fault injection. The actual completion of buffer_head
read and the buffer_head fault injection are not atomic, which can lead
to the uptodate flag being cleared on normally used buffer_heads in race
conditions.
[CPU0] [CPU1] [CPU2]
ext4_read_inode_bitmap
ext4_read_bh()
<bh read complete>
ext4_read_inode_bitmap
if (buffer_uptodate(bh))
return bh
jbd2_journal_commit_transaction
__jbd2_journal_refile_buffer
__jbd2_journal_unfile_buffer
__jbd2_journal_temp_unlink_buffer
ext4_simulate_fail_bh()
clear_buffer_uptodate
mark_buffer_dirty
<report warning>
WARN_ON_ONCE(!buffer_uptodate(bh))
The best approach would be to perform fault injection in the IO completion
callback function, rather than after IO completion. However, the IO
completion callback function cannot get the fault injection code in sb.
Fix it by passing the result of fault injection into the bh read function,
we simulate faults within the bh read function itself. This requires adding
an extra parameter to the bh read functions that need fault injection.
Rejected reason: This CVE ID has been rejected or withdrawn by its CVE Numbering Authority.
New CVE Received from kernel.org12/28/2024 5:15:11 AM
Action
Type
Old Value
New Value
Added
Description
In the Linux kernel, the following vulnerability has been resolved:
ext4: fix race in buffer_head read fault injection
When I enabled ext4 debug for fault injection testing, I encountered the
following warning:
EXT4-fs error (device sda): ext4_read_inode_bitmap:201: comm fsstress:
Cannot read inode bitmap - block_group = 8, inode_bitmap = 1051
WARNING: CPU: 0 PID: 511 at fs/buffer.c:1181 mark_buffer_dirty+0x1b3/0x1d0
The root cause of the issue lies in the improper implementation of ext4's
buffer_head read fault injection. The actual completion of buffer_head
read and the buffer_head fault injection are not atomic, which can lead
to the uptodate flag being cleared on normally used buffer_heads in race
conditions.
[CPU0] [CPU1] [CPU2]
ext4_read_inode_bitmap
ext4_read_bh()
<bh read complete>
ext4_read_inode_bitmap
if (buffer_uptodate(bh))
return bh
jbd2_journal_commit_transaction
__jbd2_journal_refile_buffer
__jbd2_journal_unfile_buffer
__jbd2_journal_temp_unlink_buffer
ext4_simulate_fail_bh()
clear_buffer_uptodate
mark_buffer_dirty
<report warning>
WARN_ON_ONCE(!buffer_uptodate(bh))
The best approach would be to perform fault injection in the IO completion
callback function, rather than after IO completion. However, the IO
completion callback function cannot get the fault injection code in sb.
Fix it by passing the result of fault injection into the bh read function,
we simulate faults within the bh read function itself. This requires adding
an extra parameter to the bh read functions that need fault injection.