CVE-2025-12058 Detail
Received
This CVE record has recently been published to the CVE List and has been included within the NVD dataset. DescriptionThe Keras.Model.load_model method, including when executed with the intended security mitigation safe_mode=True, is vulnerable to arbitrary local file loading and Server-Side Request Forgery (SSRF). This vulnerability stems from the way the StringLookup layer is handled during model loading from a specially crafted .keras archive. The constructor for the StringLookup layer accepts a vocabulary argument that can specify a local file path or a remote file path. * Arbitrary Local File Read: An attacker can create a malicious .keras file that embeds a local path in the StringLookup layer's configuration. When the model is loaded, Keras will attempt to read the content of the specified local file and incorporate it into the model state (e.g., retrievable via get_vocabulary()), allowing an attacker to read arbitrary local files on the hosting system. * Server-Side Request Forgery (SSRF): Keras utilizes tf.io.gfile for file operations. Since tf.io.gfile supports remote filesystem handlers (such as GCS and HDFS) and HTTP/HTTPS protocols, the same mechanism can be leveraged to fetch content from arbitrary network endpoints on the server's behalf, resulting in an SSRF condition. The security issue is that the feature allowing external path loading was not properly restricted by the safe_mode=True flag, which was intended to prevent such unintended data access. Metrics
NVD enrichment efforts reference publicly available information to associate
vector strings. CVSS information contributed by other sources is also
displayed.
CVSS 4.0 Severity and Vector Strings:
CNA: Google Inc.
CVSS-B 5.9 MEDIUM
Vector: CVSS:4.0/AV:A/AC:H/AT:P/PR:L/UI:P/VC:H/VI:L/VA:L/SC:H/SI:L/SA:L
References to Advisories, Solutions, and ToolsBy selecting these links, you will be leaving NIST webspace. We have provided these links to other web sites because they may have information that would be of interest to you. No inferences should be drawn on account of other sites being referenced, or not, from this page. There may be other web sites that are more appropriate for your purpose. NIST does not necessarily endorse the views expressed, or concur with the facts presented on these sites. Further, NIST does not endorse any commercial products that may be mentioned on these sites. Please address comments about this page to [email protected].
Weakness Enumeration
Quick InfoCVE Dictionary Entry:CVE-2025-12058 NVD Published Date: 10/29/2025 NVD Last Modified: 10/29/2025 Source: Google Inc. |
||||||||||||||||