U.S. flag   An official website of the United States government
Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Https

Secure .gov websites use HTTPS
A lock (Dot gov) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

CVE-2025-29779 Detail

Description

Post-Quantum Secure Feldman's Verifiable Secret Sharing provides a Python implementation of Feldman's Verifiable Secret Sharing (VSS) scheme. In versions 0.7.6b0 and prior, the `secure_redundant_execution` function in feldman_vss.py attempts to mitigate fault injection attacks by executing a function multiple times and comparing results. However, several critical weaknesses exist. Python's execution environment cannot guarantee true isolation between redundant executions, the constant-time comparison implementation in Python is subject to timing variations, the randomized execution order and timing provide insufficient protection against sophisticated fault attacks, and the error handling may leak timing information about partial execution results. These limitations make the protection ineffective against targeted fault injection attacks, especially from attackers with physical access to the hardware. A successful fault injection attack could allow an attacker to bypass the redundancy check mechanisms, extract secret polynomial coefficients during share generation or verification, force the acceptance of invalid shares during verification, and/or manipulate the commitment verification process to accept fraudulent commitments. This undermines the core security guarantees of the Verifiable Secret Sharing scheme. As of time of publication, no patched versions of Post-Quantum Secure Feldman's Verifiable Secret Sharing exist, but other mitigations are available. Long-term remediation requires reimplementing the security-critical functions in a lower-level language like Rust. Short-term mitigations include deploying the software in environments with physical security controls, increasing the redundancy count (from 5 to a higher number) by modifying the source code, adding external verification of cryptographic operations when possible, considering using hardware security modules (HSMs) for key operations.


Metrics

NVD enrichment efforts reference publicly available information to associate vector strings. CVSS information contributed by other sources is also displayed.
CVSS 4.0 Severity and Vector Strings:

NIST CVSS score
NIST: NVD
N/A
NVD assessment not yet provided.

Nist CVSS score does not match with CNA score
CNA:  GitHub, Inc.
CVSS-B 5.4 MEDIUM
Vector:  CVSS:4.0/AV:P/AC:H/AT:P/PR:N/UI:N/VC:H/VI:H/VA:H/SC:N/SI:N/SA:N

References to Advisories, Solutions, and Tools

By selecting these links, you will be leaving NIST webspace. We have provided these links to other web sites because they may have information that would be of interest to you. No inferences should be drawn on account of other sites being referenced, or not, from this page. There may be other web sites that are more appropriate for your purpose. NIST does not necessarily endorse the views expressed, or concur with the facts presented on these sites. Further, NIST does not endorse any commercial products that may be mentioned on these sites. Please address comments about this page to nvd@nist.gov.

Hyperlink Resource
https://en.wikipedia.org/wiki/Fault_attack
https://eprint.iacr.org/2004/100.pdf
https://github.com/DavidOsipov/PostQuantum-Feldman-VSS/security/advisories/GHSA-r8gc-qc2c-c7vh

Weakness Enumeration

CWE-ID CWE Name Source
CWE-1279 Cryptographic Operations are run Before Supporting Units are Ready GitHub, Inc.  
CWE-1240 Use of a Cryptographic Primitive with a Risky Implementation GitHub, Inc.  

Change History

1 change records found show changes

Quick Info

CVE Dictionary Entry:
CVE-2025-29779
NVD Published Date:
03/14/2025
NVD Last Modified:
03/14/2025
Source:
GitHub, Inc.