You are viewing this page in an unauthorized frame window.
This is a potential security issue, you are being redirected to
https://nvd.nist.gov
An official website of the United States government
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock () or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.
This vulnerability has been modified since it was last analyzed by the NVD. It is awaiting reanalysis which may result in further changes to the information provided.
Current Description
The Diffie-Hellman Key Agreement Protocol allows use of long exponents that arguably make certain calculations unnecessarily expensive, because the 1996 van Oorschot and Wiener paper found that "(appropriately) short exponents" can be used when there are adequate subgroup constraints, and these short exponents can lead to less expensive calculations than for long exponents. This issue is different from CVE-2002-20001 because it is based on an observation about exponent size, rather than an observation about numbers that are not public keys. The specific situations in which calculation expense would constitute a server-side vulnerability depend on the protocol (e.g., TLS, SSH, or IKE) and the DHE implementation details. In general, there might be an availability concern because of server-side resource consumption from DHE modular-exponentiation calculations. Finally, it is possible for an attacker to exploit this vulnerability and CVE-2002-20001 together.
Using long exponents in the Diffie-Hellman Key Agreement Protocol allows remote attackers (from the client side) to trigger unnecessarily expensive server-side DHE modular-exponentiation calculations. An attacker may cause asymmetric resource consumption with any common client application which uses a DHE implementation that applies short exponents. The attack may be more disruptive in cases where a client sends arbitrary numbers that are actually not DH public keys (aka the D(HE)ater attack) or can require a server to select its largest supported key size. The basic attack scenario is that the client must claim that it can only communicate with DHE, and the server must be configured to allow DHE. This can affect TLS, SSH, and IKE.
Metrics
NVD enrichment efforts reference publicly available information to associate
vector strings. CVSS information contributed by other sources is also
displayed.
By selecting these links, you will be leaving NIST webspace.
We have provided these links to other web sites because they
may have information that would be of interest to you. No
inferences should be drawn on account of other sites being
referenced, or not, from this page. There may be other web
sites that are more appropriate for your purpose. NIST does
not necessarily endorse the views expressed, or concur with
the facts presented on these sites. Further, NIST does not
endorse any commercial products that may be mentioned on
these sites. Please address comments about this page to nvd@nist.gov.
Using long exponents in the Diffie-Hellman Key Agreement Protocol allows remote attackers (from the client side) to trigger unnecessarily expensive server-side DHE modular-exponentiation calculations. An attacker may cause asymmetric resource consumption with any common client application which uses a DHE implementation that applies short exponents. The attack may be more disruptive in cases where a client sends arbitrary numbers that are actually not DH public keys (aka the D(HE)ater attack) or
The Diffie-Hellman Key Agreement Protocol allows use of long exponents that arguably make certain calculations unnecessarily expensive, because the 1996 van Oorschot and Wiener paper found that "(appropriately) short exponents" can be used when there are adequate subgroup constraints, and these short exponents can lead to less expensive calculations than for long exponents. This issue is different from CVE-2002-20001 because it is based on an observation about exponent size, rather than an obser
OR
*cpe:2.3:a:diffie-hellman_key_exchange_project:diffie-hellman_key_exchange:-:*:*:*:*:*:*:*
Changed
Reference Type
https://gist.github.com/c0r0n3r/9455ddcab985c50fd1912eabf26e058b No Types Assigned
https://gist.github.com/c0r0n3r/9455ddcab985c50fd1912eabf26e058b Third Party Advisory
Changed
Reference Type
https://github.com/mozilla/ssl-config-generator/issues/162 No Types Assigned
https://github.com/mozilla/ssl-config-generator/issues/162 Issue Tracking, Third Party Advisory
Changed
Reference Type
https://link.springer.com/content/pdf/10.1007/3-540-68339-9_29.pdf No Types Assigned
https://link.springer.com/content/pdf/10.1007/3-540-68339-9_29.pdf Technical Description, Third Party Advisory
Changed
Reference Type
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57pt1r5.pdf No Types Assigned
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57pt1r5.pdf Technical Description, Third Party Advisory, US Government Resource
Changed
Reference Type
https://www.researchgate.net/profile/Anton-Stiglic-2/publication/2401745_Security_Issues_in_the_Diffie-Hellman_Key_Agreement_Protocol/links/546c144f0cf20dedafd53e7e/Security-Issues-in-the-Diffie-Hellman-Key-Agreement-Protocol.pdf No Types Assigned
https://www.researchgate.net/profile/Anton-Stiglic-2/publication/2401745_Security_Issues_in_the_Diffie-Hellman_Key_Agreement_Protocol/links/546c144f0cf20dedafd53e7e/Security-Issues-in-the-Diffie-Hellman-Key-Agreement-Protocol.pdf Technical Description, Third Party Advisory
Quick Info
CVE Dictionary Entry: CVE-2022-40735 NVD
Published Date: 11/14/2022 NVD
Last Modified: 11/21/2024
Source: MITRE