You are viewing this page in an unauthorized frame window.
This is a potential security issue, you are being redirected to
https://nvd.nist.gov
An official website of the United States government
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock () or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.
This CVE record has been updated after NVD enrichment efforts were completed. Enrichment data supplied by the NVD may require amendment due to these changes.
Current Description
A read buffer overrun can be triggered in X.509 certificate verification,
specifically in name constraint checking. Note that this occurs
after certificate chain signature verification and requires either a
CA to have signed the malicious certificate or for the application to
continue certificate verification despite failure to construct a path
to a trusted issuer.
The read buffer overrun might result in a crash which could lead to
a denial of service attack. In theory it could also result in the disclosure
of private memory contents (such as private keys, or sensitive plaintext)
although we are not aware of any working exploit leading to memory
contents disclosure as of the time of release of this advisory.
In a TLS client, this can be triggered by connecting to a malicious
server. In a TLS server, this can be triggered if the server requests
client authentication and a malicious client connects.
A read buffer overrun can be triggered in X.509 certificate verification, specifically in name constraint checking. Note that this occurs after certificate chain signature verification and requires either a CA to have signed the malicious certificate or for the application to continue certificate verification despite failure to construct a path to a trusted issuer. The read buffer overrun might result in a crash which could lead to a denial of service attack. In theory it could also result in the disclosure of private memory contents (such as private keys, or sensitive plaintext) although we are not aware of any working exploit leading to memory contents disclosure as of the time of release of this advisory. In a TLS client, this can be triggered by connecting to a malicious server. In a TLS server, this can be triggered if the server requests client authentication and a malicious client connects.
Metrics
NVD enrichment efforts reference publicly available information to associate
vector strings. CVSS information contributed by other sources is also
displayed.
By selecting these links, you will be leaving NIST webspace.
We have provided these links to other web sites because they
may have information that would be of interest to you. No
inferences should be drawn on account of other sites being
referenced, or not, from this page. There may be other web
sites that are more appropriate for your purpose. NIST does
not necessarily endorse the views expressed, or concur with
the facts presented on these sites. Further, NIST does not
endorse any commercial products that may be mentioned on
these sites. Please address comments about this page to nvd@nist.gov.
A read buffer overrun can be triggered in X.509 certificate verification,
specifically in name constraint checking. Note that this occurs
after certificate chain signature verification and requires either a
CA to have signed the malicious certificate or for the application to
continue certificate verification despite failure to construct a path
to a trusted issuer.
The read buffer overrun might result in a crash which could lead to
a denial of service attack. In theory it could also result in t
A read buffer overrun can be triggered in X.509 certificate verification,
specifically in name constraint checking. Note that this occurs
after certificate chain signature verification and requires either a
CA to have signed the malicious certificate or for the application to
continue certificate verification despite failure to construct a path
to a trusted issuer.
The read buffer overrun might result in a crash which could lead to
a denial of service attack. In theory it could also result in t
A read buffer overrun can be triggered in X.509 certificate verification, specifically in name constraint checking. Note that this occurs after certificate chain signature verification and requires either a CA to have signed the malicious certificate or for the application to continue certificate verification despite failure to construct a path to a trusted issuer. The read buffer overrun might result in a crash which could lead to a denial of service attack. In theory it could also result in th
A read buffer overrun can be triggered in X.509 certificate verification,
specifically in name constraint checking. Note that this occurs
after certificate chain signature verification and requires either a
CA to have signed the malicious certificate or for the application to
continue certificate verification despite failure to construct a path
to a trusted issuer.
The read buffer overrun might result in a crash which could lead to
a denial of service attack. In theory it could also result in t
Reanalysis by NIST3/09/2023 3:03:36 PM
Action
Type
Old Value
New Value
Added
CVSS V3.1
NIST AV:N/AC:L/PR:H/UI:N/S:U/C:N/I:N/A:H
Removed
CVSS V3.1
NIST AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:N/A:H
Initial Analysis by NIST3/06/2023 1:50:21 PM
Action
Type
Old Value
New Value
Added
CVSS V3.1
NIST AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:N/A:H
Added
CWE
NIST CWE-125
Added
CPE Configuration
OR
*cpe:2.3:a:openssl:openssl:*:*:*:*:*:*:*:* versions from (including) 3.0.0 up to (excluding) 3.0.8
Changed
Reference Type
https://git.openssl.org/gitweb/?p=openssl.git;a=commitdiff;h=c927a3492698c254637da836762f9b1f86cffabc No Types Assigned