You are viewing this page in an unauthorized frame window.
This is a potential security issue, you are being redirected to
https://nvd.nist.gov
An official website of the United States government
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock () or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.
This CVE record has been updated after NVD enrichment efforts were completed. Enrichment data supplied by the NVD may require amendment due to these changes.
Current Description
Vyper is a Pythonic Smart Contract Language for the EVM. When the Vyper Compiler uses the precompiles EcRecover (0x1) and Identity (0x4), the success flag of the call is not checked. As a consequence an attacker can provide a specific amount of gas to make these calls fail but let the overall execution continue. Then the execution result can be incorrect. Based on EVM's rules, after the failed precompile the remaining code has only 1/64 of the pre-call-gas left (as 63/64 were forwarded and spent). Hence, only fairly simple executions can follow the failed precompile calls. Therefore, we found no significantly impacted real-world contracts. None the less an advisory has been made out of an abundance of caution. This issue is fixed in 0.4.1.
Vyper is a Pythonic Smart Contract Language for the EVM. When the Vyper Compiler uses the precompiles EcRecover (0x1) and Identity (0x4), the success flag of the call is not checked. As a consequence an attacker can provide a specific amount of gas to make these calls fail but let the overall execution continue. Then the execution result can be incorrect. Based on EVM's rules, after the failed precompile the remaining code has only 1/64 of the pre-call-gas left (as 63/64 were forwarded and spent). Hence, only fairly simple executions can follow the failed precompile calls. Therefore, we found no significantly impacted real-world contracts. None the less an advisory has been made out of an abundance of caution. There are no actions for users to take.
Metrics
NVD enrichment efforts reference publicly available information to associate
vector strings. CVSS information contributed by other sources is also
displayed.
By selecting these links, you will be leaving NIST webspace.
We have provided these links to other web sites because they
may have information that would be of interest to you. No
inferences should be drawn on account of other sites being
referenced, or not, from this page. There may be other web
sites that are more appropriate for your purpose. NIST does
not necessarily endorse the views expressed, or concur with
the facts presented on these sites. Further, NIST does not
endorse any commercial products that may be mentioned on
these sites. Please address comments about this page to nvd@nist.gov.
Vyper is a Pythonic Smart Contract Language for the EVM. When the Vyper Compiler uses the precompiles EcRecover (0x1) and Identity (0x4), the success flag of the call is not checked. As a consequence an attacker can provide a specific amount of gas to make these calls fail but let the overall execution continue. Then the execution result can be incorrect. Based on EVM's rules, after the failed precompile the remaining code has only 1/64 of the pre-call-gas left (as 63/64 were forwarded and spent
Vyper is a Pythonic Smart Contract Language for the EVM. When the Vyper Compiler uses the precompiles EcRecover (0x1) and Identity (0x4), the success flag of the call is not checked. As a consequence an attacker can provide a specific amount of gas to make these calls fail but let the overall execution continue. Then the execution result can be incorrect. Based on EVM's rules, after the failed precompile the remaining code has only 1/64 of the pre-call-gas left (as 63/64 were forwarded and spent
Vyper is a Pythonic Smart Contract Language for the EVM. When the Vyper Compiler uses the precompiles EcRecover (0x1) and Identity (0x4), the success flag of the call is not checked. As a consequence an attacker can provide a specific amount of gas to make these calls fail but let the overall execution continue. Then the execution result can be incorrect. Based on EVM's rules, after the failed precompile the remaining code has only 1/64 of the pre-call-gas left (as 63/64 were forwarded and spent