You are viewing this page in an unauthorized frame window.
This is a potential security issue, you are being redirected to
https://nvd.nist.gov
An official website of the United States government
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock () or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.
In the Linux kernel, the following vulnerability has been resolved:
mm/kmemleak: avoid soft lockup in __kmemleak_do_cleanup()
A soft lockup warning was observed on a relative small system x86-64
system with 16 GB of memory when running a debug kernel with kmemleak
enabled.
watchdog: BUG: soft lockup - CPU#8 stuck for 33s! [kworker/8:1:134]
The test system was running a workload with hot unplug happening in
parallel. Then kemleak decided to disable itself due to its inability to
allocate more kmemleak objects. The debug kernel has its
CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE set to 40,000.
The soft lockup happened in kmemleak_do_cleanup() when the existing
kmemleak objects were being removed and deleted one-by-one in a loop via a
workqueue. In this particular case, there are at least 40,000 objects
that need to be processed and given the slowness of a debug kernel and the
fact that a raw_spinlock has to be acquired and released in
__delete_object(), it could take a while to properly handle all these
objects.
As kmemleak has been disabled in this case, the object removal and
deletion process can be further optimized as locking isn't really needed.
However, it is probably not worth the effort to optimize for such an edge
case that should rarely happen. So the simple solution is to call
cond_resched() at periodic interval in the iteration loop to avoid soft
lockup.
Metrics
NVD enrichment efforts reference publicly available information to associate
vector strings. CVSS information contributed by other sources is also
displayed.
By selecting these links, you will be leaving NIST webspace.
We have provided these links to other web sites because they
may have information that would be of interest to you. No
inferences should be drawn on account of other sites being
referenced, or not, from this page. There may be other web
sites that are more appropriate for your purpose. NIST does
not necessarily endorse the views expressed, or concur with
the facts presented on these sites. Further, NIST does not
endorse any commercial products that may be mentioned on
these sites. Please address comments about this page to [email protected].
OR
*cpe:2.3:o:debian:debian_linux:11.0:*:*:*:*:*:*:*
Added
CPE Configuration
OR
*cpe:2.3:o:linux:linux_kernel:5.4:-:*:*:*:*:*:*
*cpe:2.3:o:linux:linux_kernel:5.4:rc4:*:*:*:*:*:*
*cpe:2.3:o:linux:linux_kernel:5.4:rc5:*:*:*:*:*:*
*cpe:2.3:o:linux:linux_kernel:5.4:rc6:*:*:*:*:*:*
*cpe:2.3:o:linux:linux_kernel:5.4:rc7:*:*:*:*:*:*
*cpe:2.3:o:linux:linux_kernel:5.4:rc8:*:*:*:*:*:*
*cpe:2.3:o:linux:linux_kernel:*:*:*:*:*:*:*:* versions from (including) 6.2 up to (excluding) 6.6.103
*cpe:2.3:o:linux:linux_kernel:*:*:*:*:*:*:*:* versions from (including) 6.7 up to (excluding) 6.12.43
*cpe:2.3:o:linux:linux_kernel:*:*:*:*:*:*:*:* versions from (including) 5.11 up to (excluding) 5.15.190
*cpe:2.3:o:linux:linux_kernel:*:*:*:*:*:*:*:* versions from (including) 5.5 up to (excluding) 5.10.241
*cpe:2.3:o:linux:linux_kernel:6.17:rc1:*:*:*:*:*:*
*cpe:2.3:o:linux:linux_kernel:*:*:*:*:*:*:*:* versions from (including) 6.13 up to (excluding) 6.15.11
*cpe:2.3:o:linux:linux_kernel:*:*:*:*:*:*:*:* versions from (including) 6.16 up to (excluding) 6.16.2
*cpe:2.3:o:linux:linux_kernel:*:*:*:*:*:*:*:* versions from (including) 5.16 up to (excluding) 6.1.149
*cpe:2.3:o:linux:linux_kernel:*:*:*:*:*:*:*:* versions from (including) 5.4.1 up to (excluding) 5.4.297
Added
Reference Type
CVE: https://lists.debian.org/debian-lts-announce/2025/10/msg00007.html Types: Third Party Advisory
Added
Reference Type
CVE: https://lists.debian.org/debian-lts-announce/2025/10/msg00008.html Types: Third Party Advisory
New CVE Received from kernel.org9/11/2025 1:15:35 PM
Action
Type
Old Value
New Value
Added
Description
In the Linux kernel, the following vulnerability has been resolved:
mm/kmemleak: avoid soft lockup in __kmemleak_do_cleanup()
A soft lockup warning was observed on a relative small system x86-64
system with 16 GB of memory when running a debug kernel with kmemleak
enabled.
watchdog: BUG: soft lockup - CPU#8 stuck for 33s! [kworker/8:1:134]
The test system was running a workload with hot unplug happening in
parallel. Then kemleak decided to disable itself due to its inability to
allocate more kmemleak objects. The debug kernel has its
CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE set to 40,000.
The soft lockup happened in kmemleak_do_cleanup() when the existing
kmemleak objects were being removed and deleted one-by-one in a loop via a
workqueue. In this particular case, there are at least 40,000 objects
that need to be processed and given the slowness of a debug kernel and the
fact that a raw_spinlock has to be acquired and released in
__delete_object(), it could take a while to properly handle all these
objects.
As kmemleak has been disabled in this case, the object removal and
deletion process can be further optimized as locking isn't really needed.
However, it is probably not worth the effort to optimize for such an edge
case that should rarely happen. So the simple solution is to call
cond_resched() at periodic interval in the iteration loop to avoid soft
lockup.