Search Results (Refine Search)
- Keyword (text search): cpe:2.3:a:nodejs:node.js:8.11.4:*:*:*:lts:*:*:*
- CPE Name Search: true
Vuln ID | Summary | CVSS Severity |
---|---|---|
CVE-2019-9518 |
Some HTTP/2 implementations are vulnerable to a flood of empty frames, potentially leading to a denial of service. The attacker sends a stream of frames with an empty payload and without the end-of-stream flag. These frames can be DATA, HEADERS, CONTINUATION and/or PUSH_PROMISE. The peer spends time processing each frame disproportionate to attack bandwidth. This can consume excess CPU. Published: August 13, 2019; 5:15:13 PM -0400 |
V4.0:(not available) V3.1: 7.5 HIGH V2.0: 7.8 HIGH |
CVE-2019-9517 |
Some HTTP/2 implementations are vulnerable to unconstrained interal data buffering, potentially leading to a denial of service. The attacker opens the HTTP/2 window so the peer can send without constraint; however, they leave the TCP window closed so the peer cannot actually write (many of) the bytes on the wire. The attacker then sends a stream of requests for a large response object. Depending on how the servers queue the responses, this can consume excess memory, CPU, or both. Published: August 13, 2019; 5:15:12 PM -0400 |
V4.0:(not available) V3.1: 7.5 HIGH V2.0: 7.8 HIGH |
CVE-2019-9516 |
Some HTTP/2 implementations are vulnerable to a header leak, potentially leading to a denial of service. The attacker sends a stream of headers with a 0-length header name and 0-length header value, optionally Huffman encoded into 1-byte or greater headers. Some implementations allocate memory for these headers and keep the allocation alive until the session dies. This can consume excess memory. Published: August 13, 2019; 5:15:12 PM -0400 |
V4.0:(not available) V3.1: 6.5 MEDIUM V2.0: 6.8 MEDIUM |
CVE-2019-9515 |
Some HTTP/2 implementations are vulnerable to a settings flood, potentially leading to a denial of service. The attacker sends a stream of SETTINGS frames to the peer. Since the RFC requires that the peer reply with one acknowledgement per SETTINGS frame, an empty SETTINGS frame is almost equivalent in behavior to a ping. Depending on how efficiently this data is queued, this can consume excess CPU, memory, or both. Published: August 13, 2019; 5:15:12 PM -0400 |
V4.0:(not available) V3.1: 7.5 HIGH V2.0: 7.8 HIGH |
CVE-2019-9514 |
Some HTTP/2 implementations are vulnerable to a reset flood, potentially leading to a denial of service. The attacker opens a number of streams and sends an invalid request over each stream that should solicit a stream of RST_STREAM frames from the peer. Depending on how the peer queues the RST_STREAM frames, this can consume excess memory, CPU, or both. Published: August 13, 2019; 5:15:12 PM -0400 |
V4.0:(not available) V3.1: 7.5 HIGH V2.0: 7.8 HIGH |
CVE-2019-9513 |
Some HTTP/2 implementations are vulnerable to resource loops, potentially leading to a denial of service. The attacker creates multiple request streams and continually shuffles the priority of the streams in a way that causes substantial churn to the priority tree. This can consume excess CPU. Published: August 13, 2019; 5:15:12 PM -0400 |
V4.0:(not available) V3.1: 7.5 HIGH V2.0: 7.8 HIGH |
CVE-2019-9512 |
Some HTTP/2 implementations are vulnerable to ping floods, potentially leading to a denial of service. The attacker sends continual pings to an HTTP/2 peer, causing the peer to build an internal queue of responses. Depending on how efficiently this data is queued, this can consume excess CPU, memory, or both. Published: August 13, 2019; 5:15:12 PM -0400 |
V4.0:(not available) V3.1: 7.5 HIGH V2.0: 7.8 HIGH |
CVE-2019-9511 |
Some HTTP/2 implementations are vulnerable to window size manipulation and stream prioritization manipulation, potentially leading to a denial of service. The attacker requests a large amount of data from a specified resource over multiple streams. They manipulate window size and stream priority to force the server to queue the data in 1-byte chunks. Depending on how efficiently this data is queued, this can consume excess CPU, memory, or both. Published: August 13, 2019; 5:15:12 PM -0400 |
V4.0:(not available) V3.1: 7.5 HIGH V2.0: 7.8 HIGH |
CVE-2019-5737 |
In Node.js including 6.x before 6.17.0, 8.x before 8.15.1, 10.x before 10.15.2, and 11.x before 11.10.1, an attacker can cause a Denial of Service (DoS) by establishing an HTTP or HTTPS connection in keep-alive mode and by sending headers very slowly. This keeps the connection and associated resources alive for a long period of time. Potential attacks are mitigated by the use of a load balancer or other proxy layer. This vulnerability is an extension of CVE-2018-12121, addressed in November and impacts all active Node.js release lines including 6.x before 6.17.0, 8.x before 8.15.1, 10.x before 10.15.2, and 11.x before 11.10.1. Published: March 28, 2019; 1:29:01 PM -0400 |
V4.0:(not available) V3.1: 7.5 HIGH V2.0: 5.0 MEDIUM |
CVE-2019-1559 |
If an application encounters a fatal protocol error and then calls SSL_shutdown() twice (once to send a close_notify, and once to receive one) then OpenSSL can respond differently to the calling application if a 0 byte record is received with invalid padding compared to if a 0 byte record is received with an invalid MAC. If the application then behaves differently based on that in a way that is detectable to the remote peer, then this amounts to a padding oracle that could be used to decrypt data. In order for this to be exploitable "non-stitched" ciphersuites must be in use. Stitched ciphersuites are optimised implementations of certain commonly used ciphersuites. Also the application must call SSL_shutdown() twice even if a protocol error has occurred (applications should not do this but some do anyway). Fixed in OpenSSL 1.0.2r (Affected 1.0.2-1.0.2q). Published: February 27, 2019; 6:29:00 PM -0500 |
V4.0:(not available) V3.1: 5.9 MEDIUM V2.0: 4.3 MEDIUM |
CVE-2018-12123 |
Node.js: All versions prior to Node.js 6.15.0, 8.14.0, 10.14.0 and 11.3.0: Hostname spoofing in URL parser for javascript protocol: If a Node.js application is using url.parse() to determine the URL hostname, that hostname can be spoofed by using a mixed case "javascript:" (e.g. "javAscript:") protocol (other protocols are not affected). If security decisions are made about the URL based on the hostname, they may be incorrect. Published: November 28, 2018; 12:29:00 PM -0500 |
V4.0:(not available) V3.1: 4.3 MEDIUM V2.0: 4.3 MEDIUM |
CVE-2018-12122 |
Node.js: All versions prior to Node.js 6.15.0, 8.14.0, 10.14.0 and 11.3.0: Slowloris HTTP Denial of Service: An attacker can cause a Denial of Service (DoS) by sending headers very slowly keeping HTTP or HTTPS connections and associated resources alive for a long period of time. Published: November 28, 2018; 12:29:00 PM -0500 |
V4.0:(not available) V3.1: 7.5 HIGH V2.0: 5.0 MEDIUM |
CVE-2018-12121 |
Node.js: All versions prior to Node.js 6.15.0, 8.14.0, 10.14.0 and 11.3.0: Denial of Service with large HTTP headers: By using a combination of many requests with maximum sized headers (almost 80 KB per connection), and carefully timed completion of the headers, it is possible to cause the HTTP server to abort from heap allocation failure. Attack potential is mitigated by the use of a load balancer or other proxy layer. Published: November 28, 2018; 12:29:00 PM -0500 |
V4.0:(not available) V3.1: 7.5 HIGH V2.0: 5.0 MEDIUM |
CVE-2018-12116 |
Node.js: All versions prior to Node.js 6.15.0 and 8.14.0: HTTP request splitting: If Node.js can be convinced to use unsanitized user-provided Unicode data for the `path` option of an HTTP request, then data can be provided which will trigger a second, unexpected, and user-defined HTTP request to made to the same server. Published: November 28, 2018; 12:29:00 PM -0500 |
V4.0:(not available) V3.1: 7.5 HIGH V2.0: 5.0 MEDIUM |
CVE-2018-0734 |
The OpenSSL DSA signature algorithm has been shown to be vulnerable to a timing side channel attack. An attacker could use variations in the signing algorithm to recover the private key. Fixed in OpenSSL 1.1.1a (Affected 1.1.1). Fixed in OpenSSL 1.1.0j (Affected 1.1.0-1.1.0i). Fixed in OpenSSL 1.0.2q (Affected 1.0.2-1.0.2p). Published: October 30, 2018; 8:29:00 AM -0400 |
V4.0:(not available) V3.1: 5.9 MEDIUM V2.0: 4.3 MEDIUM |
CVE-2018-1000168 |
nghttp2 version >= 1.10.0 and nghttp2 <= v1.31.0 contains an Improper Input Validation CWE-20 vulnerability in ALTSVC frame handling that can result in segmentation fault leading to denial of service. This attack appears to be exploitable via network client. This vulnerability appears to have been fixed in >= 1.31.1. Published: May 08, 2018; 11:29:00 AM -0400 |
V4.0:(not available) V3.1: 7.5 HIGH V2.0: 5.0 MEDIUM |