U.S. flag   An official website of the United States government
Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Https

Secure .gov websites use HTTPS
A lock (Dot gov) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Results (Refine Search)

Search Parameters:
  • Keyword (text search): cpe:2.3:o:cisco:ios:12.4\(25e\)jam1:*:*:*:*:*:*:*
  • CPE Name Search: true
There are 61 matching records.
Displaying matches 1 through 20.
Vuln ID Summary CVSS Severity
CVE-2022-20726

Multiple vulnerabilities in the Cisco IOx application hosting environment on multiple Cisco platforms could allow an attacker to inject arbitrary commands into the underlying host operating system, execute arbitrary code on the underlying host operating system, install applications without being authenticated, or conduct a cross-site scripting (XSS) attack against a user of the affected software. For more information about these vulnerabilities, see the Details section of this advisory.

Published: April 15, 2022; 11:15:13 AM -0400
V3.1: 7.5 HIGH
V2.0: 5.0 MEDIUM
CVE-2021-34703

A vulnerability in the Link Layer Discovery Protocol (LLDP) message parser of Cisco IOS Software and Cisco IOS XE Software could allow an attacker to trigger a reload of an affected device, resulting in a denial of service (DoS) condition. This vulnerability is due to improper initialization of a buffer. An attacker could exploit this vulnerability via any of the following methods: An authenticated, remote attacker could access the LLDP neighbor table via either the CLI or SNMP while the device is in a specific state. An unauthenticated, adjacent attacker could corrupt the LLDP neighbor table by injecting specific LLDP frames into the network and then waiting for an administrator of the device or a network management system (NMS) managing the device to retrieve the LLDP neighbor table of the device via either the CLI or SNMP. An authenticated, adjacent attacker with SNMP read-only credentials or low privileges on the device CLI could corrupt the LLDP neighbor table by injecting specific LLDP frames into the network and then accessing the LLDP neighbor table via either the CLI or SNMP. A successful exploit could allow the attacker to cause the affected device to crash, resulting in a reload of the device.

Published: September 22, 2021; 11:15:16 PM -0400
V3.1: 6.5 MEDIUM
V2.0: 6.8 MEDIUM
CVE-2019-16009

A vulnerability in the web UI of Cisco IOS and Cisco IOS XE Software could allow an unauthenticated, remote attacker to conduct a cross-site request forgery (CSRF) attack on an affected system. The vulnerability is due to insufficient CSRF protections for the web UI on an affected device. An attacker could exploit this vulnerability by persuading a user of the interface to follow a malicious link. A successful exploit could allow the attacker to perform arbitrary actions with the privilege level of the targeted user. If the user has administrative privileges, the attacker could alter the configuration, execute commands, or reload an affected device.

Published: September 22, 2020; 9:15:13 PM -0400
V3.1: 8.8 HIGH
V2.0: 7.6 HIGH
CVE-2011-4661

A memory leak vulnerability exists in Cisco IOS before 15.2(1)T due to a memory leak in the HTTP PROXY Server process (aka CSCtu52820), when configured with Cisco ISR Web Security with Cisco ScanSafe and User Authenticaiton NTLM configured.

Published: February 12, 2020; 12:15:11 PM -0500
V3.1: 7.5 HIGH
V2.0: 4.3 MEDIUM
CVE-2019-12655

A vulnerability in the FTP application layer gateway (ALG) functionality used by Network Address Translation (NAT), NAT IPv6 to IPv4 (NAT64), and the Zone-Based Policy Firewall (ZBFW) in Cisco IOS XE Software could allow an unauthenticated, remote attacker to cause an affected device to reload. The vulnerability is due to a buffer overflow that occurs when an affected device inspects certain FTP traffic. An attacker could exploit this vulnerability by performing a specific FTP transfer through the device. A successful exploit could allow the attacker to cause the device to reload.

Published: September 25, 2019; 5:15:10 PM -0400
V3.1: 7.5 HIGH
V2.0: 7.8 HIGH
CVE-2019-1649

A vulnerability in the logic that handles access control to one of the hardware components in Cisco's proprietary Secure Boot implementation could allow an authenticated, local attacker to write a modified firmware image to the component. This vulnerability affects multiple Cisco products that support hardware-based Secure Boot functionality. The vulnerability is due to an improper check on the area of code that manages on-premise updates to a Field Programmable Gate Array (FPGA) part of the Secure Boot hardware implementation. An attacker with elevated privileges and access to the underlying operating system that is running on the affected device could exploit this vulnerability by writing a modified firmware image to the FPGA. A successful exploit could either cause the device to become unusable (and require a hardware replacement) or allow tampering with the Secure Boot verification process, which under some circumstances may allow the attacker to install and boot a malicious software image. An attacker will need to fulfill all the following conditions to attempt to exploit this vulnerability: Have privileged administrative access to the device. Be able to access the underlying operating system running on the device; this can be achieved either by using a supported, documented mechanism or by exploiting another vulnerability that would provide an attacker with such access. Develop or have access to a platform-specific exploit. An attacker attempting to exploit this vulnerability across multiple affected platforms would need to research each one of those platforms and then develop a platform-specific exploit. Although the research process could be reused across different platforms, an exploit developed for a given hardware platform is unlikely to work on a different hardware platform.

Published: May 13, 2019; 3:29:01 PM -0400
V3.1: 6.7 MEDIUM
V2.0: 7.2 HIGH
CVE-2017-12289

A vulnerability in conditional, verbose debug logging for the IPsec feature of Cisco IOS XE Software could allow an authenticated, local attacker to display sensitive IPsec information in the system log file. The vulnerability is due to incorrect implementation of IPsec conditional, verbose debug logging that causes sensitive information to be written to the log file. This information should be restricted. An attacker who has valid administrative credentials could exploit this vulnerability by authenticating to the device and enabling conditional, verbose debug logging for IPsec and viewing the log file. An exploit could allow the attacker to access sensitive information related to the IPsec configuration. Cisco Bug IDs: CSCvf12081.

Published: October 19, 2017; 4:29:00 AM -0400
V3.0: 4.4 MEDIUM
V2.0: 2.1 LOW
CVE-2012-5030

Cisco IOS before 15.2(4)S6 does not initialize an unspecified variable, which might allow remote authenticated users to cause a denial of service (CPU consumption, watchdog timeout, crash) by walking specific SNMP objects.

Published: August 02, 2017; 3:29:00 PM -0400
V3.0: 6.5 MEDIUM
V2.0: 6.8 MEDIUM
CVE-2017-3881

A vulnerability in the Cisco Cluster Management Protocol (CMP) processing code in Cisco IOS and Cisco IOS XE Software could allow an unauthenticated, remote attacker to cause a reload of an affected device or remotely execute code with elevated privileges. The Cluster Management Protocol utilizes Telnet internally as a signaling and command protocol between cluster members. The vulnerability is due to the combination of two factors: (1) the failure to restrict the use of CMP-specific Telnet options only to internal, local communications between cluster members and instead accept and process such options over any Telnet connection to an affected device; and (2) the incorrect processing of malformed CMP-specific Telnet options. An attacker could exploit this vulnerability by sending malformed CMP-specific Telnet options while establishing a Telnet session with an affected Cisco device configured to accept Telnet connections. An exploit could allow an attacker to execute arbitrary code and obtain full control of the device or cause a reload of the affected device. This affects Catalyst switches, Embedded Service 2020 switches, Enhanced Layer 2 EtherSwitch Service Module, Enhanced Layer 2/3 EtherSwitch Service Module, Gigabit Ethernet Switch Module (CGESM) for HP, IE Industrial Ethernet switches, ME 4924-10GE switch, RF Gateway 10, and SM-X Layer 2/3 EtherSwitch Service Module. Cisco Bug IDs: CSCvd48893.

Published: March 17, 2017; 6:59:00 PM -0400
V3.1: 9.8 CRITICAL
V2.0: 10.0 HIGH
CVE-2014-2146

The Zone-Based Firewall (ZBFW) functionality in Cisco IOS, possibly 15.4 and earlier, and IOS XE, possibly 3.13 and earlier, mishandles zone checking for existing sessions, which allows remote attackers to bypass intended resource-access restrictions via spoofed traffic that matches one of these sessions, aka Bug IDs CSCun94946 and CSCun96847.

Published: September 22, 2016; 1:59:00 PM -0400
V3.0: 6.5 MEDIUM
V2.0: 4.3 MEDIUM
CVE-2016-6403

The Data in Motion (DMo) application in Cisco IOS 15.6(1)T and IOS XE, when the IOx feature set is enabled, allows remote attackers to cause a denial of service via a crafted packet, aka Bug IDs CSCuy82904, CSCuy82909, and CSCuy82912.

Published: September 18, 2016; 6:59:12 PM -0400
V3.0: 5.9 MEDIUM
V2.0: 4.3 MEDIUM
CVE-2016-1409

The Neighbor Discovery (ND) protocol implementation in the IPv6 stack in Cisco IOS XE 2.1 through 3.17S, IOS XR 2.0.0 through 5.3.2, and NX-OS allows remote attackers to cause a denial of service (packet-processing outage) via crafted ND messages, aka Bug ID CSCuz66542, as exploited in the wild in May 2016.

Published: May 29, 2016; 6:59:01 PM -0400
V3.0: 7.5 HIGH
V2.0: 5.0 MEDIUM
CVE-2015-0681

The TFTP server in Cisco IOS 12.2(44)SQ1, 12.2(33)XN1, 12.4(25e)JAM1, 12.4(25e)JAO5m, 12.4(23)JY, 15.0(2)ED1, 15.0(2)EY3, 15.1(3)SVF4a, and 15.2(2)JB1 and IOS XE 2.5.x, 2.6.x, 3.1.xS, 3.2.xS, 3.3.xS, 3.4.xS, and 3.5.xS before 3.6.0S; 3.1.xSG, 3.2.xSG, and 3.3.xSG before 3.4.0SG; 3.2.xSE before 3.3.0SE; 3.2.xXO before 3.3.0XO; 3.2.xSQ; 3.3.xSQ; and 3.4.xSQ allows remote attackers to cause a denial of service (device hang or reload) via multiple requests that trigger improper memory management, aka Bug ID CSCts66733.

Published: July 24, 2015; 12:59:00 PM -0400
V3.x:(not available)
V2.0: 7.1 HIGH
CVE-2015-0649

Cisco IOS 12.2, 12.4, 15.0, 15.2, and 15.3 allows remote attackers to cause a denial of service (device reload) via malformed Common Industrial Protocol (CIP) TCP packets, aka Bug ID CSCun63514.

Published: March 26, 2015; 6:59:14 AM -0400
V3.x:(not available)
V2.0: 7.8 HIGH
CVE-2015-0648

Memory leak in Cisco IOS 12.2, 12.4, 15.0, 15.2, and 15.3 allows remote attackers to cause a denial of service (memory consumption) via crafted Common Industrial Protocol (CIP) TCP packets, aka Bug ID CSCun49658.

Published: March 26, 2015; 6:59:13 AM -0400
V3.x:(not available)
V2.0: 7.8 HIGH
CVE-2015-0647

Cisco IOS 12.2, 12.4, 15.0, 15.2, and 15.3 allows remote attackers to cause a denial of service (device reload) via malformed Common Industrial Protocol (CIP) UDP packets, aka Bug ID CSCum98371.

Published: March 26, 2015; 6:59:12 AM -0400
V3.x:(not available)
V2.0: 7.8 HIGH
CVE-2015-0638

Cisco IOS 12.2, 12.4, 15.0, 15.2, and 15.3, when a VRF interface is configured, allows remote attackers to cause a denial of service (interface queue wedge) via crafted ICMPv4 packets, aka Bug ID CSCsi02145.

Published: March 26, 2015; 6:59:04 AM -0400
V3.x:(not available)
V2.0: 7.1 HIGH
CVE-2015-0637

The Autonomic Networking Infrastructure (ANI) implementation in Cisco IOS 12.2, 12.4, 15.0, 15.2, 15.3, and 15.4 and IOS XE 3.10.xS through 3.13.xS before 3.13.1S allows remote attackers to cause a denial of service (device reload) via spoofed AN messages, aka Bug ID CSCup62315.

Published: March 26, 2015; 6:59:03 AM -0400
V3.x:(not available)
V2.0: 7.8 HIGH
CVE-2015-0636

The Autonomic Networking Infrastructure (ANI) implementation in Cisco IOS 12.2, 12.4, 15.0, 15.2, 15.3, and 15.4 and IOS XE 3.10.xS through 3.13.xS before 3.13.1S allows remote attackers to cause a denial of service (disrupted domain access) via spoofed AN messages that reset a finite state machine, aka Bug ID CSCup62293.

Published: March 26, 2015; 6:59:02 AM -0400
V3.x:(not available)
V2.0: 7.8 HIGH
CVE-2015-0635

The Autonomic Networking Infrastructure (ANI) implementation in Cisco IOS 12.2, 12.4, 15.0, 15.2, 15.3, and 15.4 and IOS XE 3.10.xS through 3.13.xS before 3.13.1S allows remote attackers to spoof Autonomic Networking Registration Authority (ANRA) responses, and consequently bypass intended device and node access restrictions or cause a denial of service (disrupted domain access), via crafted AN messages, aka Bug ID CSCup62191.

Published: March 26, 2015; 6:59:00 AM -0400
V3.x:(not available)
V2.0: 9.0 HIGH