U.S. flag   An official website of the United States government
Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Https

Secure .gov websites use HTTPS
A lock (Dot gov) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Results (Refine Search)

Search Parameters:
  • Results Type: Overview
  • Keyword (text search): cpe:2.3:o:fedoraproject:fedora:31:*:*:*:*:*:*:*
  • CPE Name Search: true
There are 879 matching records.
Displaying matches 81 through 100.
Vuln ID Summary CVSS Severity
CVE-2020-25604

An issue was discovered in Xen through 4.14.x. There is a race condition when migrating timers between x86 HVM vCPUs. When migrating timers of x86 HVM guests between its vCPUs, the locking model used allows for a second vCPU of the same guest (also operating on the timers) to release a lock that it didn't acquire. The most likely effect of the issue is a hang or crash of the hypervisor, i.e., a Denial of Service (DoS). All versions of Xen are affected. Only x86 systems are vulnerable. Arm systems are not vulnerable. Only x86 HVM guests can leverage the vulnerability. x86 PV and PVH cannot leverage the vulnerability. Only guests with more than one vCPU can exploit the vulnerability.

Published: September 23, 2020; 6:15:13 PM -0400
V4.0:(not available)
V3.1: 4.7 MEDIUM
V2.0: 1.9 LOW
CVE-2020-25603

An issue was discovered in Xen through 4.14.x. There are missing memory barriers when accessing/allocating an event channel. Event channels control structures can be accessed lockless as long as the port is considered to be valid. Such a sequence is missing an appropriate memory barrier (e.g., smp_*mb()) to prevent both the compiler and CPU from re-ordering access. A malicious guest may be able to cause a hypervisor crash resulting in a Denial of Service (DoS). Information leak and privilege escalation cannot be excluded. Systems running all versions of Xen are affected. Whether a system is vulnerable will depend on the CPU and compiler used to build Xen. For all systems, the presence and the scope of the vulnerability depend on the precise re-ordering performed by the compiler used to build Xen. We have not been able to survey compilers; consequently we cannot say which compiler(s) might produce vulnerable code (with which code generation options). GCC documentation clearly suggests that re-ordering is possible. Arm systems will also be vulnerable if the CPU is able to re-order memory access. Please consult your CPU vendor. x86 systems are only vulnerable if a compiler performs re-ordering.

Published: September 23, 2020; 6:15:13 PM -0400
V4.0:(not available)
V3.1: 7.8 HIGH
V2.0: 4.6 MEDIUM
CVE-2020-25602

An issue was discovered in Xen through 4.14.x. An x86 PV guest can trigger a host OS crash when handling guest access to MSR_MISC_ENABLE. When a guest accesses certain Model Specific Registers, Xen first reads the value from hardware to use as the basis for auditing the guest access. For the MISC_ENABLE MSR, which is an Intel specific MSR, this MSR read is performed without error handling for a #GP fault, which is the consequence of trying to read this MSR on non-Intel hardware. A buggy or malicious PV guest administrator can crash Xen, resulting in a host Denial of Service. Only x86 systems are vulnerable. ARM systems are not vulnerable. Only Xen versions 4.11 and onwards are vulnerable. 4.10 and earlier are not vulnerable. Only x86 systems that do not implement the MISC_ENABLE MSR (0x1a0) are vulnerable. AMD and Hygon systems do not implement this MSR and are vulnerable. Intel systems do implement this MSR and are not vulnerable. Other manufacturers have not been checked. Only x86 PV guests can exploit the vulnerability. x86 HVM/PVH guests cannot exploit the vulnerability.

Published: September 23, 2020; 6:15:13 PM -0400
V4.0:(not available)
V3.1: 6.0 MEDIUM
V2.0: 4.6 MEDIUM
CVE-2020-25601

An issue was discovered in Xen through 4.14.x. There is a lack of preemption in evtchn_reset() / evtchn_destroy(). In particular, the FIFO event channel model allows guests to have a large number of event channels active at a time. Closing all of these (when resetting all event channels or when cleaning up after the guest) may take extended periods of time. So far, there was no arrangement for preemption at suitable intervals, allowing a CPU to spend an almost unbounded amount of time in the processing of these operations. Malicious or buggy guest kernels can mount a Denial of Service (DoS) attack affecting the entire system. All Xen versions are vulnerable in principle. Whether versions 4.3 and older are vulnerable depends on underlying hardware characteristics.

Published: September 23, 2020; 6:15:13 PM -0400
V4.0:(not available)
V3.1: 5.5 MEDIUM
V2.0: 4.9 MEDIUM
CVE-2020-25600

An issue was discovered in Xen through 4.14.x. Out of bounds event channels are available to 32-bit x86 domains. The so called 2-level event channel model imposes different limits on the number of usable event channels for 32-bit x86 domains vs 64-bit or Arm (either bitness) ones. 32-bit x86 domains can use only 1023 channels, due to limited space in their shared (between guest and Xen) information structure, whereas all other domains can use up to 4095 in this model. The recording of the respective limit during domain initialization, however, has occurred at a time where domains are still deemed to be 64-bit ones, prior to actually honoring respective domain properties. At the point domains get recognized as 32-bit ones, the limit didn't get updated accordingly. Due to this misbehavior in Xen, 32-bit domains (including Domain 0) servicing other domains may observe event channel allocations to succeed when they should really fail. Subsequent use of such event channels would then possibly lead to corruption of other parts of the shared info structure. An unprivileged guest may cause another domain, in particular Domain 0, to misbehave. This may lead to a Denial of Service (DoS) for the entire system. All Xen versions from 4.4 onwards are vulnerable. Xen versions 4.3 and earlier are not vulnerable. Only x86 32-bit domains servicing other domains are vulnerable. Arm systems, as well as x86 64-bit domains, are not vulnerable.

Published: September 23, 2020; 6:15:13 PM -0400
V4.0:(not available)
V3.1: 5.5 MEDIUM
V2.0: 4.9 MEDIUM
CVE-2020-25599

An issue was discovered in Xen through 4.14.x. There are evtchn_reset() race conditions. Uses of EVTCHNOP_reset (potentially by a guest on itself) or XEN_DOMCTL_soft_reset (by itself covered by XSA-77) can lead to the violation of various internal assumptions. This may lead to out of bounds memory accesses or triggering of bug checks. In particular, x86 PV guests may be able to elevate their privilege to that of the host. Host and guest crashes are also possible, leading to a Denial of Service (DoS). Information leaks cannot be ruled out. All Xen versions from 4.5 onwards are vulnerable. Xen versions 4.4 and earlier are not vulnerable.

Published: September 23, 2020; 6:15:13 PM -0400
V4.0:(not available)
V3.1: 7.0 HIGH
V2.0: 4.4 MEDIUM
CVE-2020-25598

An issue was discovered in Xen 4.14.x. There is a missing unlock in the XENMEM_acquire_resource error path. The RCU (Read, Copy, Update) mechanism is a synchronisation primitive. A buggy error path in the XENMEM_acquire_resource exits without releasing an RCU reference, which is conceptually similar to forgetting to unlock a spinlock. A buggy or malicious HVM stubdomain can cause an RCU reference to be leaked. This causes subsequent administration operations, (e.g., CPU offline) to livelock, resulting in a host Denial of Service. The buggy codepath has been present since Xen 4.12. Xen 4.14 and later are vulnerable to the DoS. The side effects are believed to be benign on Xen 4.12 and 4.13, but patches are provided nevertheless. The vulnerability can generally only be exploited by x86 HVM VMs, as these are generally the only type of VM that have a Qemu stubdomain. x86 PV and PVH domains, as well as ARM VMs, typically don't use a stubdomain. Only VMs using HVM stubdomains can exploit the vulnerability. VMs using PV stubdomains, or with emulators running in dom0, cannot exploit the vulnerability.

Published: September 23, 2020; 6:15:13 PM -0400
V4.0:(not available)
V3.1: 5.5 MEDIUM
V2.0: 2.1 LOW
CVE-2020-25597

An issue was discovered in Xen through 4.14.x. There is mishandling of the constraint that once-valid event channels may not turn invalid. Logic in the handling of event channel operations in Xen assumes that an event channel, once valid, will not become invalid over the life time of a guest. However, operations like the resetting of all event channels may involve decreasing one of the bounds checked when determining validity. This may lead to bug checks triggering, crashing the host. An unprivileged guest may be able to crash Xen, leading to a Denial of Service (DoS) for the entire system. All Xen versions from 4.4 onwards are vulnerable. Xen versions 4.3 and earlier are not vulnerable. Only systems with untrusted guests permitted to create more than the default number of event channels are vulnerable. This number depends on the architecture and type of guest. For 32-bit x86 PV guests, this is 1023; for 64-bit x86 PV guests, and for all ARM guests, this number is 4095. Systems where untrusted guests are limited to fewer than this number are not vulnerable. Note that xl and libxl limit max_event_channels to 1023 by default, so systems using exclusively xl, libvirt+libxl, or their own toolstack based on libxl, and not explicitly setting max_event_channels, are not vulnerable.

Published: September 23, 2020; 6:15:13 PM -0400
V4.0:(not available)
V3.1: 6.5 MEDIUM
V2.0: 6.1 MEDIUM
CVE-2020-25596

An issue was discovered in Xen through 4.14.x. x86 PV guest kernels can experience denial of service via SYSENTER. The SYSENTER instruction leaves various state sanitization activities to software. One of Xen's sanitization paths injects a #GP fault, and incorrectly delivers it twice to the guest. This causes the guest kernel to observe a kernel-privilege #GP fault (typically fatal) rather than a user-privilege #GP fault (usually converted into SIGSEGV/etc.). Malicious or buggy userspace can crash the guest kernel, resulting in a VM Denial of Service. All versions of Xen from 3.2 onwards are vulnerable. Only x86 systems are vulnerable. ARM platforms are not vulnerable. Only x86 systems that support the SYSENTER instruction in 64bit mode are vulnerable. This is believed to be Intel, Centaur, and Shanghai CPUs. AMD and Hygon CPUs are not believed to be vulnerable. Only x86 PV guests can exploit the vulnerability. x86 PVH / HVM guests cannot exploit the vulnerability.

Published: September 23, 2020; 6:15:13 PM -0400
V4.0:(not available)
V3.1: 5.5 MEDIUM
V2.0: 2.1 LOW
CVE-2020-25595

An issue was discovered in Xen through 4.14.x. The PCI passthrough code improperly uses register data. Code paths in Xen's MSI handling have been identified that act on unsanitized values read back from device hardware registers. While devices strictly compliant with PCI specifications shouldn't be able to affect these registers, experience shows that it's very common for devices to have out-of-spec "backdoor" operations that can affect the result of these reads. A not fully trusted guest may be able to crash Xen, leading to a Denial of Service (DoS) for the entire system. Privilege escalation and information leaks cannot be excluded. All versions of Xen supporting PCI passthrough are affected. Only x86 systems are vulnerable. Arm systems are not vulnerable. Only guests with passed through PCI devices may be able to leverage the vulnerability. Only systems passing through devices with out-of-spec ("backdoor") functionality can cause issues. Experience shows that such out-of-spec functionality is common; unless you have reason to believe that your device does not have such functionality, it's better to assume that it does.

Published: September 23, 2020; 5:15:12 PM -0400
V4.0:(not available)
V3.1: 7.8 HIGH
V2.0: 6.1 MEDIUM
CVE-2020-14370

An information disclosure vulnerability was found in containers/podman in versions before 2.0.5. When using the deprecated Varlink API or the Docker-compatible REST API, if multiple containers are created in a short duration, the environment variables from the first container will get leaked into subsequent containers. An attacker who has control over the subsequent containers could use this flaw to gain access to sensitive information stored in such variables.

Published: September 23, 2020; 9:15:15 AM -0400
V4.0:(not available)
V3.1: 5.3 MEDIUM
V2.0: 4.0 MEDIUM
CVE-2020-6576

Use after free in offscreen canvas in Google Chrome prior to 85.0.4183.102 allowed a remote attacker to potentially exploit heap corruption via a crafted HTML page.

Published: September 21, 2020; 4:15:15 PM -0400
V4.0:(not available)
V3.1: 8.8 HIGH
V2.0: 6.8 MEDIUM
CVE-2020-6575

Race in Mojo in Google Chrome prior to 85.0.4183.102 allowed a remote attacker who had compromised the renderer process to potentially perform a sandbox escape via a crafted HTML page.

Published: September 21, 2020; 4:15:15 PM -0400
V4.0:(not available)
V3.1: 8.3 HIGH
V2.0: 5.1 MEDIUM
CVE-2020-6574

Insufficient policy enforcement in installer in Google Chrome on OS X prior to 85.0.4183.102 allowed a local attacker to potentially achieve privilege escalation via a crafted binary.

Published: September 21, 2020; 4:15:15 PM -0400
V4.0:(not available)
V3.1: 7.8 HIGH
V2.0: 4.6 MEDIUM
CVE-2020-6573

Use after free in video in Google Chrome on Android prior to 85.0.4183.102 allowed a remote attacker who had compromised the renderer process to potentially perform a sandbox escape via a crafted HTML page.

Published: September 21, 2020; 4:15:15 PM -0400
V4.0:(not available)
V3.1: 9.6 CRITICAL
V2.0: 6.8 MEDIUM
CVE-2020-15966

Insufficient policy enforcement in extensions in Google Chrome prior to 85.0.4183.121 allowed an attacker who convinced a user to install a malicious extension to obtain potentially sensitive information via a crafted Chrome Extension.

Published: September 21, 2020; 4:15:13 PM -0400
V4.0:(not available)
V3.1: 4.3 MEDIUM
V2.0: 4.3 MEDIUM
CVE-2020-15965

Type confusion in V8 in Google Chrome prior to 85.0.4183.121 allowed a remote attacker to potentially perform out of bounds memory access via a crafted HTML page.

Published: September 21, 2020; 4:15:13 PM -0400
V4.0:(not available)
V3.1: 8.8 HIGH
V2.0: 6.8 MEDIUM
CVE-2020-15964

Insufficient data validation in media in Google Chrome prior to 85.0.4183.121 allowed a remote attacker to potentially exploit heap corruption via a crafted HTML page.

Published: September 21, 2020; 4:15:12 PM -0400
V4.0:(not available)
V3.1: 8.8 HIGH
V2.0: 6.8 MEDIUM
CVE-2020-15963

Insufficient policy enforcement in extensions in Google Chrome prior to 85.0.4183.121 allowed an attacker who convinced a user to install a malicious extension to potentially perform a sandbox escape via a crafted Chrome Extension.

Published: September 21, 2020; 4:15:12 PM -0400
V4.0:(not available)
V3.1: 9.6 CRITICAL
V2.0: 6.8 MEDIUM
CVE-2020-15962

Insufficient policy validation in serial in Google Chrome prior to 85.0.4183.121 allowed a remote attacker to potentially perform out of bounds memory access via a crafted HTML page.

Published: September 21, 2020; 4:15:12 PM -0400
V4.0:(not available)
V3.1: 8.8 HIGH
V2.0: 6.8 MEDIUM