U.S. flag   An official website of the United States government
Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Https

Secure .gov websites use HTTPS
A lock (Dot gov) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Results (Refine Search)

Search Parameters:
  • Results Type: Overview
  • Keyword (text search): Linux kernel
  • Search Type: Search Last 3 Months
  • CPE Name Search: false
There are 2,015 matching records.
Displaying matches 21 through 40.
Vuln ID Summary CVSS Severity
CVE-2024-38306

In the Linux kernel, the following vulnerability has been resolved: btrfs: protect folio::private when attaching extent buffer folios [BUG] Since v6.8 there are rare kernel crashes reported by various people, the common factor is bad page status error messages like this: BUG: Bad page state in process kswapd0 pfn:d6e840 page: refcount:0 mapcount:0 mapping:000000007512f4f2 index:0x2796c2c7c pfn:0xd6e840 aops:btree_aops ino:1 flags: 0x17ffffe0000008(uptodate|node=0|zone=2|lastcpupid=0x3fffff) page_type: 0xffffffff() raw: 0017ffffe0000008 dead000000000100 dead000000000122 ffff88826d0be4c0 raw: 00000002796c2c7c 0000000000000000 00000000ffffffff 0000000000000000 page dumped because: non-NULL mapping [CAUSE] Commit 09e6cef19c9f ("btrfs: refactor alloc_extent_buffer() to allocate-then-attach method") changes the sequence when allocating a new extent buffer. Previously we always called grab_extent_buffer() under mapping->i_private_lock, to ensure the safety on modification on folio::private (which is a pointer to extent buffer for regular sectorsize). This can lead to the following race: Thread A is trying to allocate an extent buffer at bytenr X, with 4 4K pages, meanwhile thread B is trying to release the page at X + 4K (the second page of the extent buffer at X). Thread A | Thread B -----------------------------------+------------------------------------- | btree_release_folio() | | This is for the page at X + 4K, | | Not page X. | | alloc_extent_buffer() | |- release_extent_buffer() |- filemap_add_folio() for the | | |- atomic_dec_and_test(eb->refs) | page at bytenr X (the first | | | | page). | | | | Which returned -EEXIST. | | | | | | | |- filemap_lock_folio() | | | | Returned the first page locked. | | | | | | | |- grab_extent_buffer() | | | | |- atomic_inc_not_zero() | | | | | Returned false | | | | |- folio_detach_private() | | |- folio_detach_private() for X | |- folio_test_private() | | |- folio_test_private() | Returned true | | | Returned true |- folio_put() | |- folio_put() Now there are two puts on the same folio at folio X, leading to refcount underflow of the folio X, and eventually causing the BUG_ON() on the page->mapping. The condition is not that easy to hit: - The release must be triggered for the middle page of an eb If the release is on the same first page of an eb, page lock would kick in and prevent the race. - folio_detach_private() has a very small race window It's only between folio_test_private() and folio_clear_private(). That's exactly when mapping->i_private_lock is used to prevent such race, and commit 09e6cef19c9f ("btrfs: refactor alloc_extent_buffer() to allocate-then-attach method") screwed that up. At that time, I thought the page lock would kick in as filemap_release_folio() also requires the page to be locked, but forgot the filemap_release_folio() only locks one page, not all pages of an extent buffer. [FIX] Move all the code requiring i_private_lock into attach_eb_folio_to_filemap(), so that everything is done with proper lock protection. Furthermore to prevent future problems, add an extra lockdep_assert_locked() to ensure we're holding the proper lock. To reproducer that is able to hit the race (takes a few minutes with instrumented code inserting delays to alloc_extent_buffer()): #!/bin/sh drop_caches () { while(true); do echo 3 > /proc/sys/vm/drop_caches echo 1 > /proc/sys/vm/compact_memory done } run_tar () { while(true); do for x in `seq 1 80` ; do tar cf /dev/zero /mnt > /dev/null & done wait done } mkfs.btrfs -f -d single -m single ---truncated---

Published: June 25, 2024; 11:15:13 AM -0400
V4.0:(not available)
V3.x:(not available)
V2.0:(not available)
CVE-2024-37354

In the Linux kernel, the following vulnerability has been resolved: btrfs: fix crash on racing fsync and size-extending write into prealloc We have been seeing crashes on duplicate keys in btrfs_set_item_key_safe(): BTRFS critical (device vdb): slot 4 key (450 108 8192) new key (450 108 8192) ------------[ cut here ]------------ kernel BUG at fs/btrfs/ctree.c:2620! invalid opcode: 0000 [#1] PREEMPT SMP PTI CPU: 0 PID: 3139 Comm: xfs_io Kdump: loaded Not tainted 6.9.0 #6 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.3-2.fc40 04/01/2014 RIP: 0010:btrfs_set_item_key_safe+0x11f/0x290 [btrfs] With the following stack trace: #0 btrfs_set_item_key_safe (fs/btrfs/ctree.c:2620:4) #1 btrfs_drop_extents (fs/btrfs/file.c:411:4) #2 log_one_extent (fs/btrfs/tree-log.c:4732:9) #3 btrfs_log_changed_extents (fs/btrfs/tree-log.c:4955:9) #4 btrfs_log_inode (fs/btrfs/tree-log.c:6626:9) #5 btrfs_log_inode_parent (fs/btrfs/tree-log.c:7070:8) #6 btrfs_log_dentry_safe (fs/btrfs/tree-log.c:7171:8) #7 btrfs_sync_file (fs/btrfs/file.c:1933:8) #8 vfs_fsync_range (fs/sync.c:188:9) #9 vfs_fsync (fs/sync.c:202:9) #10 do_fsync (fs/sync.c:212:9) #11 __do_sys_fdatasync (fs/sync.c:225:9) #12 __se_sys_fdatasync (fs/sync.c:223:1) #13 __x64_sys_fdatasync (fs/sync.c:223:1) #14 do_syscall_x64 (arch/x86/entry/common.c:52:14) #15 do_syscall_64 (arch/x86/entry/common.c:83:7) #16 entry_SYSCALL_64+0xaf/0x14c (arch/x86/entry/entry_64.S:121) So we're logging a changed extent from fsync, which is splitting an extent in the log tree. But this split part already exists in the tree, triggering the BUG(). This is the state of the log tree at the time of the crash, dumped with drgn (https://github.com/osandov/drgn/blob/main/contrib/btrfs_tree.py) to get more details than btrfs_print_leaf() gives us: >>> print_extent_buffer(prog.crashed_thread().stack_trace()[0]["eb"]) leaf 33439744 level 0 items 72 generation 9 owner 18446744073709551610 leaf 33439744 flags 0x100000000000000 fs uuid e5bd3946-400c-4223-8923-190ef1f18677 chunk uuid d58cb17e-6d02-494a-829a-18b7d8a399da item 0 key (450 INODE_ITEM 0) itemoff 16123 itemsize 160 generation 7 transid 9 size 8192 nbytes 8473563889606862198 block group 0 mode 100600 links 1 uid 0 gid 0 rdev 0 sequence 204 flags 0x10(PREALLOC) atime 1716417703.220000000 (2024-05-22 15:41:43) ctime 1716417704.983333333 (2024-05-22 15:41:44) mtime 1716417704.983333333 (2024-05-22 15:41:44) otime 17592186044416.000000000 (559444-03-08 01:40:16) item 1 key (450 INODE_REF 256) itemoff 16110 itemsize 13 index 195 namelen 3 name: 193 item 2 key (450 XATTR_ITEM 1640047104) itemoff 16073 itemsize 37 location key (0 UNKNOWN.0 0) type XATTR transid 7 data_len 1 name_len 6 name: user.a data a item 3 key (450 EXTENT_DATA 0) itemoff 16020 itemsize 53 generation 9 type 1 (regular) extent data disk byte 303144960 nr 12288 extent data offset 0 nr 4096 ram 12288 extent compression 0 (none) item 4 key (450 EXTENT_DATA 4096) itemoff 15967 itemsize 53 generation 9 type 2 (prealloc) prealloc data disk byte 303144960 nr 12288 prealloc data offset 4096 nr 8192 item 5 key (450 EXTENT_DATA 8192) itemoff 15914 itemsize 53 generation 9 type 2 (prealloc) prealloc data disk byte 303144960 nr 12288 prealloc data offset 8192 nr 4096 ... So the real problem happened earlier: notice that items 4 (4k-12k) and 5 (8k-12k) overlap. Both are prealloc extents. Item 4 straddles i_size and item 5 starts at i_size. Here is the state of ---truncated---

Published: June 25, 2024; 11:15:13 AM -0400
V4.0:(not available)
V3.x:(not available)
V2.0:(not available)
CVE-2024-37078

In the Linux kernel, the following vulnerability has been resolved: nilfs2: fix potential kernel bug due to lack of writeback flag waiting Destructive writes to a block device on which nilfs2 is mounted can cause a kernel bug in the folio/page writeback start routine or writeback end routine (__folio_start_writeback in the log below): kernel BUG at mm/page-writeback.c:3070! Oops: invalid opcode: 0000 [#1] PREEMPT SMP KASAN PTI ... RIP: 0010:__folio_start_writeback+0xbaa/0x10e0 Code: 25 ff 0f 00 00 0f 84 18 01 00 00 e8 40 ca c6 ff e9 17 f6 ff ff e8 36 ca c6 ff 4c 89 f7 48 c7 c6 80 c0 12 84 e8 e7 b3 0f 00 90 <0f> 0b e8 1f ca c6 ff 4c 89 f7 48 c7 c6 a0 c6 12 84 e8 d0 b3 0f 00 ... Call Trace: <TASK> nilfs_segctor_do_construct+0x4654/0x69d0 [nilfs2] nilfs_segctor_construct+0x181/0x6b0 [nilfs2] nilfs_segctor_thread+0x548/0x11c0 [nilfs2] kthread+0x2f0/0x390 ret_from_fork+0x4b/0x80 ret_from_fork_asm+0x1a/0x30 </TASK> This is because when the log writer starts a writeback for segment summary blocks or a super root block that use the backing device's page cache, it does not wait for the ongoing folio/page writeback, resulting in an inconsistent writeback state. Fix this issue by waiting for ongoing writebacks when putting folios/pages on the backing device into writeback state.

Published: June 25, 2024; 11:15:12 AM -0400
V4.0:(not available)
V3.x:(not available)
V2.0:(not available)
CVE-2022-48772

In the Linux kernel, the following vulnerability has been resolved: media: lgdt3306a: Add a check against null-pointer-def The driver should check whether the client provides the platform_data. The following log reveals it: [ 29.610324] BUG: KASAN: null-ptr-deref in kmemdup+0x30/0x40 [ 29.610730] Read of size 40 at addr 0000000000000000 by task bash/414 [ 29.612820] Call Trace: [ 29.613030] <TASK> [ 29.613201] dump_stack_lvl+0x56/0x6f [ 29.613496] ? kmemdup+0x30/0x40 [ 29.613754] print_report.cold+0x494/0x6b7 [ 29.614082] ? kmemdup+0x30/0x40 [ 29.614340] kasan_report+0x8a/0x190 [ 29.614628] ? kmemdup+0x30/0x40 [ 29.614888] kasan_check_range+0x14d/0x1d0 [ 29.615213] memcpy+0x20/0x60 [ 29.615454] kmemdup+0x30/0x40 [ 29.615700] lgdt3306a_probe+0x52/0x310 [ 29.616339] i2c_device_probe+0x951/0xa90

Published: June 25, 2024; 11:15:11 AM -0400
V4.0:(not available)
V3.x:(not available)
V2.0:(not available)
CVE-2021-4440

In the Linux kernel, the following vulnerability has been resolved: x86/xen: Drop USERGS_SYSRET64 paravirt call commit afd30525a659ac0ae0904f0cb4a2ca75522c3123 upstream. USERGS_SYSRET64 is used to return from a syscall via SYSRET, but a Xen PV guest will nevertheless use the IRET hypercall, as there is no sysret PV hypercall defined. So instead of testing all the prerequisites for doing a sysret and then mangling the stack for Xen PV again for doing an iret just use the iret exit from the beginning. This can easily be done via an ALTERNATIVE like it is done for the sysenter compat case already. It should be noted that this drops the optimization in Xen for not restoring a few registers when returning to user mode, but it seems as if the saved instructions in the kernel more than compensate for this drop (a kernel build in a Xen PV guest was slightly faster with this patch applied). While at it remove the stale sysret32 remnants. [ pawan: Brad Spengler and Salvatore Bonaccorso <carnil@debian.org> reported a problem with the 5.10 backport commit edc702b4a820 ("x86/entry_64: Add VERW just before userspace transition"). When CONFIG_PARAVIRT_XXL=y, CLEAR_CPU_BUFFERS is not executed in syscall_return_via_sysret path as USERGS_SYSRET64 is runtime patched to: .cpu_usergs_sysret64 = { 0x0f, 0x01, 0xf8, 0x48, 0x0f, 0x07 }, // swapgs; sysretq which is missing CLEAR_CPU_BUFFERS. It turns out dropping USERGS_SYSRET64 simplifies the code, allowing CLEAR_CPU_BUFFERS to be explicitly added to syscall_return_via_sysret path. Below is with CONFIG_PARAVIRT_XXL=y and this patch applied: syscall_return_via_sysret: ... <+342>: swapgs <+345>: xchg %ax,%ax <+347>: verw -0x1a2(%rip) <------ <+354>: sysretq ]

Published: June 25, 2024; 11:15:11 AM -0400
V4.0:(not available)
V3.x:(not available)
V2.0:(not available)
CVE-2024-39292

In the Linux kernel, the following vulnerability has been resolved: um: Add winch to winch_handlers before registering winch IRQ Registering a winch IRQ is racy, an interrupt may occur before the winch is added to the winch_handlers list. If that happens, register_winch_irq() adds to that list a winch that is scheduled to be (or has already been) freed, causing a panic later in winch_cleanup(). Avoid the race by adding the winch to the winch_handlers list before registering the IRQ, and rolling back if um_request_irq() fails.

Published: June 24, 2024; 10:15:12 AM -0400
V4.0:(not available)
V3.x:(not available)
V2.0:(not available)
CVE-2024-39291

In the Linux kernel, the following vulnerability has been resolved: drm/amdgpu: Fix buffer size in gfx_v9_4_3_init_ cp_compute_microcode() and rlc_microcode() The function gfx_v9_4_3_init_microcode in gfx_v9_4_3.c was generating about potential truncation of output when using the snprintf function. The issue was due to the size of the buffer 'ucode_prefix' being too small to accommodate the maximum possible length of the string being written into it. The string being written is "amdgpu/%s_mec.bin" or "amdgpu/%s_rlc.bin", where %s is replaced by the value of 'chip_name'. The length of this string without the %s is 16 characters. The warning message indicated that 'chip_name' could be up to 29 characters long, resulting in a total of 45 characters, which exceeds the buffer size of 30 characters. To resolve this issue, the size of the 'ucode_prefix' buffer has been reduced from 30 to 15. This ensures that the maximum possible length of the string being written into the buffer will not exceed its size, thus preventing potential buffer overflow and truncation issues. Fixes the below with gcc W=1: drivers/gpu/drm/amd/amdgpu/gfx_v9_4_3.c: In function ‘gfx_v9_4_3_early_init’: drivers/gpu/drm/amd/amdgpu/gfx_v9_4_3.c:379:52: warning: ‘%s’ directive output may be truncated writing up to 29 bytes into a region of size 23 [-Wformat-truncation=] 379 | snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_rlc.bin", chip_name); | ^~ ...... 439 | r = gfx_v9_4_3_init_rlc_microcode(adev, ucode_prefix); | ~~~~~~~~~~~~ drivers/gpu/drm/amd/amdgpu/gfx_v9_4_3.c:379:9: note: ‘snprintf’ output between 16 and 45 bytes into a destination of size 30 379 | snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_rlc.bin", chip_name); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ drivers/gpu/drm/amd/amdgpu/gfx_v9_4_3.c:413:52: warning: ‘%s’ directive output may be truncated writing up to 29 bytes into a region of size 23 [-Wformat-truncation=] 413 | snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_mec.bin", chip_name); | ^~ ...... 443 | r = gfx_v9_4_3_init_cp_compute_microcode(adev, ucode_prefix); | ~~~~~~~~~~~~ drivers/gpu/drm/amd/amdgpu/gfx_v9_4_3.c:413:9: note: ‘snprintf’ output between 16 and 45 bytes into a destination of size 30 413 | snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_mec.bin", chip_name); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Published: June 24, 2024; 10:15:12 AM -0400
V4.0:(not available)
V3.x:(not available)
V2.0:(not available)
CVE-2024-38667

In the Linux kernel, the following vulnerability has been resolved: riscv: prevent pt_regs corruption for secondary idle threads Top of the kernel thread stack should be reserved for pt_regs. However this is not the case for the idle threads of the secondary boot harts. Their stacks overlap with their pt_regs, so both may get corrupted. Similar issue has been fixed for the primary hart, see c7cdd96eca28 ("riscv: prevent stack corruption by reserving task_pt_regs(p) early"). However that fix was not propagated to the secondary harts. The problem has been noticed in some CPU hotplug tests with V enabled. The function smp_callin stored several registers on stack, corrupting top of pt_regs structure including status field. As a result, kernel attempted to save or restore inexistent V context.

Published: June 24, 2024; 10:15:12 AM -0400
V4.0:(not available)
V3.x:(not available)
V2.0:(not available)
CVE-2024-38664

In the Linux kernel, the following vulnerability has been resolved: drm: zynqmp_dpsub: Always register bridge We must always register the DRM bridge, since zynqmp_dp_hpd_work_func calls drm_bridge_hpd_notify, which in turn expects hpd_mutex to be initialized. We do this before zynqmp_dpsub_drm_init since that calls drm_bridge_attach. This fixes the following lockdep warning: [ 19.217084] ------------[ cut here ]------------ [ 19.227530] DEBUG_LOCKS_WARN_ON(lock->magic != lock) [ 19.227768] WARNING: CPU: 0 PID: 140 at kernel/locking/mutex.c:582 __mutex_lock+0x4bc/0x550 [ 19.241696] Modules linked in: [ 19.244937] CPU: 0 PID: 140 Comm: kworker/0:4 Not tainted 6.6.20+ #96 [ 19.252046] Hardware name: xlnx,zynqmp (DT) [ 19.256421] Workqueue: events zynqmp_dp_hpd_work_func [ 19.261795] pstate: 60000005 (nZCv daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--) [ 19.269104] pc : __mutex_lock+0x4bc/0x550 [ 19.273364] lr : __mutex_lock+0x4bc/0x550 [ 19.277592] sp : ffffffc085c5bbe0 [ 19.281066] x29: ffffffc085c5bbe0 x28: 0000000000000000 x27: ffffff88009417f8 [ 19.288624] x26: ffffff8800941788 x25: ffffff8800020008 x24: ffffffc082aa3000 [ 19.296227] x23: ffffffc080d90e3c x22: 0000000000000002 x21: 0000000000000000 [ 19.303744] x20: 0000000000000000 x19: ffffff88002f5210 x18: 0000000000000000 [ 19.311295] x17: 6c707369642e3030 x16: 3030613464662072 x15: 0720072007200720 [ 19.318922] x14: 0000000000000000 x13: 284e4f5f4e524157 x12: 0000000000000001 [ 19.326442] x11: 0001ffc085c5b940 x10: 0001ff88003f388b x9 : 0001ff88003f3888 [ 19.334003] x8 : 0001ff88003f3888 x7 : 0000000000000000 x6 : 0000000000000000 [ 19.341537] x5 : 0000000000000000 x4 : 0000000000001668 x3 : 0000000000000000 [ 19.349054] x2 : 0000000000000000 x1 : 0000000000000000 x0 : ffffff88003f3880 [ 19.356581] Call trace: [ 19.359160] __mutex_lock+0x4bc/0x550 [ 19.363032] mutex_lock_nested+0x24/0x30 [ 19.367187] drm_bridge_hpd_notify+0x2c/0x6c [ 19.371698] zynqmp_dp_hpd_work_func+0x44/0x54 [ 19.376364] process_one_work+0x3ac/0x988 [ 19.380660] worker_thread+0x398/0x694 [ 19.384736] kthread+0x1bc/0x1c0 [ 19.388241] ret_from_fork+0x10/0x20 [ 19.392031] irq event stamp: 183 [ 19.395450] hardirqs last enabled at (183): [<ffffffc0800b9278>] finish_task_switch.isra.0+0xa8/0x2d4 [ 19.405140] hardirqs last disabled at (182): [<ffffffc081ad3754>] __schedule+0x714/0xd04 [ 19.413612] softirqs last enabled at (114): [<ffffffc080133de8>] srcu_invoke_callbacks+0x158/0x23c [ 19.423128] softirqs last disabled at (110): [<ffffffc080133de8>] srcu_invoke_callbacks+0x158/0x23c [ 19.432614] ---[ end trace 0000000000000000 ]--- (cherry picked from commit 61ba791c4a7a09a370c45b70a81b8c7d4cf6b2ae)

Published: June 24, 2024; 10:15:12 AM -0400
V4.0:(not available)
V3.x:(not available)
V2.0:(not available)
CVE-2024-38663

In the Linux kernel, the following vulnerability has been resolved: blk-cgroup: fix list corruption from resetting io stat Since commit 3b8cc6298724 ("blk-cgroup: Optimize blkcg_rstat_flush()"), each iostat instance is added to blkcg percpu list, so blkcg_reset_stats() can't reset the stat instance by memset(), otherwise the llist may be corrupted. Fix the issue by only resetting the counter part.

Published: June 24, 2024; 10:15:12 AM -0400
V4.0:(not available)
V3.x:(not available)
V2.0:(not available)
CVE-2024-38384

In the Linux kernel, the following vulnerability has been resolved: blk-cgroup: fix list corruption from reorder of WRITE ->lqueued __blkcg_rstat_flush() can be run anytime, especially when blk_cgroup_bio_start is being executed. If WRITE of `->lqueued` is re-ordered with READ of 'bisc->lnode.next' in the loop of __blkcg_rstat_flush(), `next_bisc` can be assigned with one stat instance being added in blk_cgroup_bio_start(), then the local list in __blkcg_rstat_flush() could be corrupted. Fix the issue by adding one barrier.

Published: June 24, 2024; 10:15:12 AM -0400
V4.0:(not available)
V3.x:(not available)
V2.0:(not available)
CVE-2024-37026

In the Linux kernel, the following vulnerability has been resolved: drm/xe: Only use reserved BCS instances for usm migrate exec queue The GuC context scheduling queue is 2 entires deep, thus it is possible for a migration job to be stuck behind a fault if migration exec queue shares engines with user jobs. This can deadlock as the migrate exec queue is required to service page faults. Avoid deadlock by only using reserved BCS instances for usm migrate exec queue. (cherry picked from commit 04f4a70a183a688a60fe3882d6e4236ea02cfc67)

Published: June 24, 2024; 10:15:12 AM -0400
V4.0:(not available)
V3.x:(not available)
V2.0:(not available)
CVE-2024-37021

In the Linux kernel, the following vulnerability has been resolved: fpga: manager: add owner module and take its refcount The current implementation of the fpga manager assumes that the low-level module registers a driver for the parent device and uses its owner pointer to take the module's refcount. This approach is problematic since it can lead to a null pointer dereference while attempting to get the manager if the parent device does not have a driver. To address this problem, add a module owner pointer to the fpga_manager struct and use it to take the module's refcount. Modify the functions for registering the manager to take an additional owner module parameter and rename them to avoid conflicts. Use the old function names for helper macros that automatically set the module that registers the manager as the owner. This ensures compatibility with existing low-level control modules and reduces the chances of registering a manager without setting the owner. Also, update the documentation to keep it consistent with the new interface for registering an fpga manager. Other changes: opportunistically move put_device() from __fpga_mgr_get() to fpga_mgr_get() and of_fpga_mgr_get() to improve code clarity since the manager device is taken in these functions.

Published: June 24, 2024; 10:15:12 AM -0400
V4.0:(not available)
V3.x:(not available)
V2.0:(not available)
CVE-2024-36479

In the Linux kernel, the following vulnerability has been resolved: fpga: bridge: add owner module and take its refcount The current implementation of the fpga bridge assumes that the low-level module registers a driver for the parent device and uses its owner pointer to take the module's refcount. This approach is problematic since it can lead to a null pointer dereference while attempting to get the bridge if the parent device does not have a driver. To address this problem, add a module owner pointer to the fpga_bridge struct and use it to take the module's refcount. Modify the function for registering a bridge to take an additional owner module parameter and rename it to avoid conflicts. Use the old function name for a helper macro that automatically sets the module that registers the bridge as the owner. This ensures compatibility with existing low-level control modules and reduces the chances of registering a bridge without setting the owner. Also, update the documentation to keep it consistent with the new interface for registering an fpga bridge. Other changes: opportunistically move put_device() from __fpga_bridge_get() to fpga_bridge_get() and of_fpga_bridge_get() to improve code clarity since the bridge device is taken in these functions.

Published: June 24, 2024; 10:15:12 AM -0400
V4.0:(not available)
V3.x:(not available)
V2.0:(not available)
CVE-2024-35247

In the Linux kernel, the following vulnerability has been resolved: fpga: region: add owner module and take its refcount The current implementation of the fpga region assumes that the low-level module registers a driver for the parent device and uses its owner pointer to take the module's refcount. This approach is problematic since it can lead to a null pointer dereference while attempting to get the region during programming if the parent device does not have a driver. To address this problem, add a module owner pointer to the fpga_region struct and use it to take the module's refcount. Modify the functions for registering a region to take an additional owner module parameter and rename them to avoid conflicts. Use the old function names for helper macros that automatically set the module that registers the region as the owner. This ensures compatibility with existing low-level control modules and reduces the chances of registering a region without setting the owner. Also, update the documentation to keep it consistent with the new interface for registering an fpga region.

Published: June 24, 2024; 10:15:12 AM -0400
V4.0:(not available)
V3.x:(not available)
V2.0:(not available)
CVE-2024-34030

In the Linux kernel, the following vulnerability has been resolved: PCI: of_property: Return error for int_map allocation failure Return -ENOMEM from of_pci_prop_intr_map() if kcalloc() fails to prevent a NULL pointer dereference in this case. [bhelgaas: commit log]

Published: June 24, 2024; 10:15:11 AM -0400
V4.0:(not available)
V3.x:(not available)
V2.0:(not available)
CVE-2024-34027

In the Linux kernel, the following vulnerability has been resolved: f2fs: compress: fix to cover {reserve,release}_compress_blocks() w/ cp_rwsem lock It needs to cover {reserve,release}_compress_blocks() w/ cp_rwsem lock to avoid racing with checkpoint, otherwise, filesystem metadata including blkaddr in dnode, inode fields and .total_valid_block_count may be corrupted after SPO case.

Published: June 24, 2024; 10:15:11 AM -0400
V4.0:(not available)
V3.x:(not available)
V2.0:(not available)
CVE-2024-33847

In the Linux kernel, the following vulnerability has been resolved: f2fs: compress: don't allow unaligned truncation on released compress inode f2fs image may be corrupted after below testcase: - mkfs.f2fs -O extra_attr,compression -f /dev/vdb - mount /dev/vdb /mnt/f2fs - touch /mnt/f2fs/file - f2fs_io setflags compression /mnt/f2fs/file - dd if=/dev/zero of=/mnt/f2fs/file bs=4k count=4 - f2fs_io release_cblocks /mnt/f2fs/file - truncate -s 8192 /mnt/f2fs/file - umount /mnt/f2fs - fsck.f2fs /dev/vdb [ASSERT] (fsck_chk_inode_blk:1256) --> ino: 0x5 has i_blocks: 0x00000002, but has 0x3 blocks [FSCK] valid_block_count matching with CP [Fail] [0x4, 0x5] [FSCK] other corrupted bugs [Fail] The reason is: partial truncation assume compressed inode has reserved blocks, after partial truncation, valid block count may change w/o .i_blocks and .total_valid_block_count update, result in corruption. This patch only allow cluster size aligned truncation on released compress inode for fixing.

Published: June 24, 2024; 10:15:11 AM -0400
V4.0:(not available)
V3.x:(not available)
V2.0:(not available)
CVE-2024-32936

In the Linux kernel, the following vulnerability has been resolved: media: ti: j721e-csi2rx: Fix races while restarting DMA After the frame is submitted to DMA, it may happen that the submitted list is not updated soon enough, and the DMA callback is triggered before that. This can lead to kernel crashes, so move everything in a single lock/unlock section to prevent such races.

Published: June 24, 2024; 10:15:11 AM -0400
V4.0:(not available)
V3.x:(not available)
V2.0:(not available)
CVE-2024-39277

In the Linux kernel, the following vulnerability has been resolved: dma-mapping: benchmark: handle NUMA_NO_NODE correctly cpumask_of_node() can be called for NUMA_NO_NODE inside do_map_benchmark() resulting in the following sanitizer report: UBSAN: array-index-out-of-bounds in ./arch/x86/include/asm/topology.h:72:28 index -1 is out of range for type 'cpumask [64][1]' CPU: 1 PID: 990 Comm: dma_map_benchma Not tainted 6.9.0-rc6 #29 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996) Call Trace: <TASK> dump_stack_lvl (lib/dump_stack.c:117) ubsan_epilogue (lib/ubsan.c:232) __ubsan_handle_out_of_bounds (lib/ubsan.c:429) cpumask_of_node (arch/x86/include/asm/topology.h:72) [inline] do_map_benchmark (kernel/dma/map_benchmark.c:104) map_benchmark_ioctl (kernel/dma/map_benchmark.c:246) full_proxy_unlocked_ioctl (fs/debugfs/file.c:333) __x64_sys_ioctl (fs/ioctl.c:890) do_syscall_64 (arch/x86/entry/common.c:83) entry_SYSCALL_64_after_hwframe (arch/x86/entry/entry_64.S:130) Use cpumask_of_node() in place when binding a kernel thread to a cpuset of a particular node. Note that the provided node id is checked inside map_benchmark_ioctl(). It's just a NUMA_NO_NODE case which is not handled properly later. Found by Linux Verification Center (linuxtesting.org).

Published: June 21, 2024; 8:15:11 AM -0400
V4.0:(not available)
V3.1: 7.8 HIGH
V2.0:(not available)