U.S. flag   An official website of the United States government
Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Https

Secure .gov websites use HTTPS
A lock (Dot gov) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Results (Refine Search)

Search Parameters:
  • Keyword (text search): cpe:2.3:o:linux:linux_kernel:2.2.16:pre6:*:*:*:*:*:*
  • CPE Name Search: true
There are 2,878 matching records.
Displaying matches 381 through 400.
Vuln ID Summary CVSS Severity
CVE-2024-41061

In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Fix array-index-out-of-bounds in dml2/FCLKChangeSupport [Why] Potential out of bounds access in dml2_calculate_rq_and_dlg_params() because the value of out_lowest_state_idx used as an index for FCLKChangeSupport array can be greater than 1. [How] Currently dml2 core specifies identical values for all FCLKChangeSupport elements. Always use index 0 in the condition to avoid out of bounds access.

Published: July 29, 2024; 11:15:14 AM -0400
V4.0:(not available)
V3.1: 7.8 HIGH
V2.0:(not available)
CVE-2024-41060

In the Linux kernel, the following vulnerability has been resolved: drm/radeon: check bo_va->bo is non-NULL before using it The call to radeon_vm_clear_freed might clear bo_va->bo, so we have to check it before dereferencing it.

Published: July 29, 2024; 11:15:14 AM -0400
V4.0:(not available)
V3.1: 5.5 MEDIUM
V2.0:(not available)
CVE-2024-41059

In the Linux kernel, the following vulnerability has been resolved: hfsplus: fix uninit-value in copy_name [syzbot reported] BUG: KMSAN: uninit-value in sized_strscpy+0xc4/0x160 sized_strscpy+0xc4/0x160 copy_name+0x2af/0x320 fs/hfsplus/xattr.c:411 hfsplus_listxattr+0x11e9/0x1a50 fs/hfsplus/xattr.c:750 vfs_listxattr fs/xattr.c:493 [inline] listxattr+0x1f3/0x6b0 fs/xattr.c:840 path_listxattr fs/xattr.c:864 [inline] __do_sys_listxattr fs/xattr.c:876 [inline] __se_sys_listxattr fs/xattr.c:873 [inline] __x64_sys_listxattr+0x16b/0x2f0 fs/xattr.c:873 x64_sys_call+0x2ba0/0x3b50 arch/x86/include/generated/asm/syscalls_64.h:195 do_syscall_x64 arch/x86/entry/common.c:52 [inline] do_syscall_64+0xcf/0x1e0 arch/x86/entry/common.c:83 entry_SYSCALL_64_after_hwframe+0x77/0x7f Uninit was created at: slab_post_alloc_hook mm/slub.c:3877 [inline] slab_alloc_node mm/slub.c:3918 [inline] kmalloc_trace+0x57b/0xbe0 mm/slub.c:4065 kmalloc include/linux/slab.h:628 [inline] hfsplus_listxattr+0x4cc/0x1a50 fs/hfsplus/xattr.c:699 vfs_listxattr fs/xattr.c:493 [inline] listxattr+0x1f3/0x6b0 fs/xattr.c:840 path_listxattr fs/xattr.c:864 [inline] __do_sys_listxattr fs/xattr.c:876 [inline] __se_sys_listxattr fs/xattr.c:873 [inline] __x64_sys_listxattr+0x16b/0x2f0 fs/xattr.c:873 x64_sys_call+0x2ba0/0x3b50 arch/x86/include/generated/asm/syscalls_64.h:195 do_syscall_x64 arch/x86/entry/common.c:52 [inline] do_syscall_64+0xcf/0x1e0 arch/x86/entry/common.c:83 entry_SYSCALL_64_after_hwframe+0x77/0x7f [Fix] When allocating memory to strbuf, initialize memory to 0.

Published: July 29, 2024; 11:15:13 AM -0400
V4.0:(not available)
V3.1: 7.1 HIGH
V2.0:(not available)
CVE-2022-48858

In the Linux kernel, the following vulnerability has been resolved: net/mlx5: Fix a race on command flush flow Fix a refcount use after free warning due to a race on command entry. Such race occurs when one of the commands releases its last refcount and frees its index and entry while another process running command flush flow takes refcount to this command entry. The process which handles commands flush may see this command as needed to be flushed if the other process released its refcount but didn't release the index yet. Fix it by adding the needed spin lock. It fixes the following warning trace: refcount_t: addition on 0; use-after-free. WARNING: CPU: 11 PID: 540311 at lib/refcount.c:25 refcount_warn_saturate+0x80/0xe0 ... RIP: 0010:refcount_warn_saturate+0x80/0xe0 ... Call Trace: <TASK> mlx5_cmd_trigger_completions+0x293/0x340 [mlx5_core] mlx5_cmd_flush+0x3a/0xf0 [mlx5_core] enter_error_state+0x44/0x80 [mlx5_core] mlx5_fw_fatal_reporter_err_work+0x37/0xe0 [mlx5_core] process_one_work+0x1be/0x390 worker_thread+0x4d/0x3d0 ? rescuer_thread+0x350/0x350 kthread+0x141/0x160 ? set_kthread_struct+0x40/0x40 ret_from_fork+0x1f/0x30 </TASK>

Published: July 16, 2024; 9:15:12 AM -0400
V4.0:(not available)
V3.1: 7.0 HIGH
V2.0:(not available)
CVE-2022-48853

In the Linux kernel, the following vulnerability has been resolved: swiotlb: fix info leak with DMA_FROM_DEVICE The problem I'm addressing was discovered by the LTP test covering cve-2018-1000204. A short description of what happens follows: 1) The test case issues a command code 00 (TEST UNIT READY) via the SG_IO interface with: dxfer_len == 524288, dxdfer_dir == SG_DXFER_FROM_DEV and a corresponding dxferp. The peculiar thing about this is that TUR is not reading from the device. 2) In sg_start_req() the invocation of blk_rq_map_user() effectively bounces the user-space buffer. As if the device was to transfer into it. Since commit a45b599ad808 ("scsi: sg: allocate with __GFP_ZERO in sg_build_indirect()") we make sure this first bounce buffer is allocated with GFP_ZERO. 3) For the rest of the story we keep ignoring that we have a TUR, so the device won't touch the buffer we prepare as if the we had a DMA_FROM_DEVICE type of situation. My setup uses a virtio-scsi device and the buffer allocated by SG is mapped by the function virtqueue_add_split() which uses DMA_FROM_DEVICE for the "in" sgs (here scatter-gather and not scsi generics). This mapping involves bouncing via the swiotlb (we need swiotlb to do virtio in protected guest like s390 Secure Execution, or AMD SEV). 4) When the SCSI TUR is done, we first copy back the content of the second (that is swiotlb) bounce buffer (which most likely contains some previous IO data), to the first bounce buffer, which contains all zeros. Then we copy back the content of the first bounce buffer to the user-space buffer. 5) The test case detects that the buffer, which it zero-initialized, ain't all zeros and fails. One can argue that this is an swiotlb problem, because without swiotlb we leak all zeros, and the swiotlb should be transparent in a sense that it does not affect the outcome (if all other participants are well behaved). Copying the content of the original buffer into the swiotlb buffer is the only way I can think of to make swiotlb transparent in such scenarios. So let's do just that if in doubt, but allow the driver to tell us that the whole mapped buffer is going to be overwritten, in which case we can preserve the old behavior and avoid the performance impact of the extra bounce.

Published: July 16, 2024; 9:15:12 AM -0400
V4.0:(not available)
V3.1: 5.5 MEDIUM
V2.0:(not available)
CVE-2022-48852

In the Linux kernel, the following vulnerability has been resolved: drm/vc4: hdmi: Unregister codec device on unbind On bind we will register the HDMI codec device but we don't unregister it on unbind, leading to a device leakage. Unregister our device at unbind.

Published: July 16, 2024; 9:15:12 AM -0400
V4.0:(not available)
V3.1: 3.3 LOW
V2.0:(not available)
CVE-2022-48850

In the Linux kernel, the following vulnerability has been resolved: net-sysfs: add check for netdevice being present to speed_show When bringing down the netdevice or system shutdown, a panic can be triggered while accessing the sysfs path because the device is already removed. [ 755.549084] mlx5_core 0000:12:00.1: Shutdown was called [ 756.404455] mlx5_core 0000:12:00.0: Shutdown was called ... [ 757.937260] BUG: unable to handle kernel NULL pointer dereference at (null) [ 758.031397] IP: [<ffffffff8ee11acb>] dma_pool_alloc+0x1ab/0x280 crash> bt ... PID: 12649 TASK: ffff8924108f2100 CPU: 1 COMMAND: "amsd" ... #9 [ffff89240e1a38b0] page_fault at ffffffff8f38c778 [exception RIP: dma_pool_alloc+0x1ab] RIP: ffffffff8ee11acb RSP: ffff89240e1a3968 RFLAGS: 00010046 RAX: 0000000000000246 RBX: ffff89243d874100 RCX: 0000000000001000 RDX: 0000000000000000 RSI: 0000000000000246 RDI: ffff89243d874090 RBP: ffff89240e1a39c0 R8: 000000000001f080 R9: ffff8905ffc03c00 R10: ffffffffc04680d4 R11: ffffffff8edde9fd R12: 00000000000080d0 R13: ffff89243d874090 R14: ffff89243d874080 R15: 0000000000000000 ORIG_RAX: ffffffffffffffff CS: 0010 SS: 0018 #10 [ffff89240e1a39c8] mlx5_alloc_cmd_msg at ffffffffc04680f3 [mlx5_core] #11 [ffff89240e1a3a18] cmd_exec at ffffffffc046ad62 [mlx5_core] #12 [ffff89240e1a3ab8] mlx5_cmd_exec at ffffffffc046b4fb [mlx5_core] #13 [ffff89240e1a3ae8] mlx5_core_access_reg at ffffffffc0475434 [mlx5_core] #14 [ffff89240e1a3b40] mlx5e_get_fec_caps at ffffffffc04a7348 [mlx5_core] #15 [ffff89240e1a3bb0] get_fec_supported_advertised at ffffffffc04992bf [mlx5_core] #16 [ffff89240e1a3c08] mlx5e_get_link_ksettings at ffffffffc049ab36 [mlx5_core] #17 [ffff89240e1a3ce8] __ethtool_get_link_ksettings at ffffffff8f25db46 #18 [ffff89240e1a3d48] speed_show at ffffffff8f277208 #19 [ffff89240e1a3dd8] dev_attr_show at ffffffff8f0b70e3 #20 [ffff89240e1a3df8] sysfs_kf_seq_show at ffffffff8eedbedf #21 [ffff89240e1a3e18] kernfs_seq_show at ffffffff8eeda596 #22 [ffff89240e1a3e28] seq_read at ffffffff8ee76d10 #23 [ffff89240e1a3e98] kernfs_fop_read at ffffffff8eedaef5 #24 [ffff89240e1a3ed8] vfs_read at ffffffff8ee4e3ff #25 [ffff89240e1a3f08] sys_read at ffffffff8ee4f27f #26 [ffff89240e1a3f50] system_call_fastpath at ffffffff8f395f92 crash> net_device.state ffff89443b0c0000 state = 0x5 (__LINK_STATE_START| __LINK_STATE_NOCARRIER) To prevent this scenario, we also make sure that the netdevice is present.

Published: July 16, 2024; 9:15:12 AM -0400
V4.0:(not available)
V3.1: 5.5 MEDIUM
V2.0:(not available)
CVE-2022-48849

In the Linux kernel, the following vulnerability has been resolved: drm/amdgpu: bypass tiling flag check in virtual display case (v2) vkms leverages common amdgpu framebuffer creation, and also as it does not support FB modifier, there is no need to check tiling flags when initing framebuffer when virtual display is enabled. This can fix below calltrace: amdgpu 0000:00:08.0: GFX9+ requires FB check based on format modifier WARNING: CPU: 0 PID: 1023 at drivers/gpu/drm/amd/amdgpu/amdgpu_display.c:1150 amdgpu_display_framebuffer_init+0x8e7/0xb40 [amdgpu] v2: check adev->enable_virtual_display instead as vkms can be enabled in bare metal as well.

Published: July 16, 2024; 9:15:12 AM -0400
V4.0:(not available)
V3.1: 5.5 MEDIUM
V2.0:(not available)
CVE-2022-48845

In the Linux kernel, the following vulnerability has been resolved: MIPS: smp: fill in sibling and core maps earlier After enabling CONFIG_SCHED_CORE (landed during 5.14 cycle), 2-core 2-thread-per-core interAptiv (CPS-driven) started emitting the following: [ 0.025698] CPU1 revision is: 0001a120 (MIPS interAptiv (multi)) [ 0.048183] ------------[ cut here ]------------ [ 0.048187] WARNING: CPU: 1 PID: 0 at kernel/sched/core.c:6025 sched_core_cpu_starting+0x198/0x240 [ 0.048220] Modules linked in: [ 0.048233] CPU: 1 PID: 0 Comm: swapper/1 Not tainted 5.17.0-rc3+ #35 b7b319f24073fd9a3c2aa7ad15fb7993eec0b26f [ 0.048247] Stack : 817f0000 00000004 327804c8 810eb050 00000000 00000004 00000000 c314fdd1 [ 0.048278] 830cbd64 819c0000 81800000 817f0000 83070bf4 00000001 830cbd08 00000000 [ 0.048307] 00000000 00000000 815fcbc4 00000000 00000000 00000000 00000000 00000000 [ 0.048334] 00000000 00000000 00000000 00000000 817f0000 00000000 00000000 817f6f34 [ 0.048361] 817f0000 818a3c00 817f0000 00000004 00000000 00000000 4dc33260 0018c933 [ 0.048389] ... [ 0.048396] Call Trace: [ 0.048399] [<8105a7bc>] show_stack+0x3c/0x140 [ 0.048424] [<8131c2a0>] dump_stack_lvl+0x60/0x80 [ 0.048440] [<8108b5c0>] __warn+0xc0/0xf4 [ 0.048454] [<8108b658>] warn_slowpath_fmt+0x64/0x10c [ 0.048467] [<810bd418>] sched_core_cpu_starting+0x198/0x240 [ 0.048483] [<810c6514>] sched_cpu_starting+0x14/0x80 [ 0.048497] [<8108c0f8>] cpuhp_invoke_callback_range+0x78/0x140 [ 0.048510] [<8108d914>] notify_cpu_starting+0x94/0x140 [ 0.048523] [<8106593c>] start_secondary+0xbc/0x280 [ 0.048539] [ 0.048543] ---[ end trace 0000000000000000 ]--- [ 0.048636] Synchronize counters for CPU 1: done. ...for each but CPU 0/boot. Basic debug printks right before the mentioned line say: [ 0.048170] CPU: 1, smt_mask: So smt_mask, which is sibling mask obviously, is empty when entering the function. This is critical, as sched_core_cpu_starting() calculates core-scheduling parameters only once per CPU start, and it's crucial to have all the parameters filled in at that moment (at least it uses cpu_smt_mask() which in fact is `&cpu_sibling_map[cpu]` on MIPS). A bit of debugging led me to that set_cpu_sibling_map() performing the actual map calculation, was being invocated after notify_cpu_start(), and exactly the latter function starts CPU HP callback round (sched_core_cpu_starting() is basically a CPU HP callback). While the flow is same on ARM64 (maps after the notifier, although before calling set_cpu_online()), x86 started calculating sibling maps earlier than starting the CPU HP callbacks in Linux 4.14 (see [0] for the reference). Neither me nor my brief tests couldn't find any potential caveats in calculating the maps right after performing delay calibration, but the WARN splat is now gone. The very same debug prints now yield exactly what I expected from them: [ 0.048433] CPU: 1, smt_mask: 0-1 [0] https://git.kernel.org/pub/scm/linux/kernel/git/mips/linux.git/commit/?id=76ce7cfe35ef

Published: July 16, 2024; 9:15:11 AM -0400
V4.0:(not available)
V3.1: 5.5 MEDIUM
V2.0:(not available)
CVE-2022-48844

In the Linux kernel, the following vulnerability has been resolved: Bluetooth: hci_core: Fix leaking sent_cmd skb sent_cmd memory is not freed before freeing hci_dev causing it to leak it contents.

Published: July 16, 2024; 9:15:11 AM -0400
V4.0:(not available)
V3.1: 5.5 MEDIUM
V2.0:(not available)
CVE-2022-48843

In the Linux kernel, the following vulnerability has been resolved: drm/vrr: Set VRR capable prop only if it is attached to connector VRR capable property is not attached by default to the connector It is attached only if VRR is supported. So if the driver tries to call drm core set prop function without it being attached that causes NULL dereference.

Published: July 16, 2024; 9:15:11 AM -0400
V4.0:(not available)
V3.1: 5.5 MEDIUM
V2.0:(not available)
CVE-2022-48842

In the Linux kernel, the following vulnerability has been resolved: ice: Fix race condition during interface enslave Commit 5dbbbd01cbba83 ("ice: Avoid RTNL lock when re-creating auxiliary device") changes a process of re-creation of aux device so ice_plug_aux_dev() is called from ice_service_task() context. This unfortunately opens a race window that can result in dead-lock when interface has left LAG and immediately enters LAG again. Reproducer: ``` #!/bin/sh ip link add lag0 type bond mode 1 miimon 100 ip link set lag0 for n in {1..10}; do echo Cycle: $n ip link set ens7f0 master lag0 sleep 1 ip link set ens7f0 nomaster done ``` This results in: [20976.208697] Workqueue: ice ice_service_task [ice] [20976.213422] Call Trace: [20976.215871] __schedule+0x2d1/0x830 [20976.219364] schedule+0x35/0xa0 [20976.222510] schedule_preempt_disabled+0xa/0x10 [20976.227043] __mutex_lock.isra.7+0x310/0x420 [20976.235071] enum_all_gids_of_dev_cb+0x1c/0x100 [ib_core] [20976.251215] ib_enum_roce_netdev+0xa4/0xe0 [ib_core] [20976.256192] ib_cache_setup_one+0x33/0xa0 [ib_core] [20976.261079] ib_register_device+0x40d/0x580 [ib_core] [20976.266139] irdma_ib_register_device+0x129/0x250 [irdma] [20976.281409] irdma_probe+0x2c1/0x360 [irdma] [20976.285691] auxiliary_bus_probe+0x45/0x70 [20976.289790] really_probe+0x1f2/0x480 [20976.298509] driver_probe_device+0x49/0xc0 [20976.302609] bus_for_each_drv+0x79/0xc0 [20976.306448] __device_attach+0xdc/0x160 [20976.310286] bus_probe_device+0x9d/0xb0 [20976.314128] device_add+0x43c/0x890 [20976.321287] __auxiliary_device_add+0x43/0x60 [20976.325644] ice_plug_aux_dev+0xb2/0x100 [ice] [20976.330109] ice_service_task+0xd0c/0xed0 [ice] [20976.342591] process_one_work+0x1a7/0x360 [20976.350536] worker_thread+0x30/0x390 [20976.358128] kthread+0x10a/0x120 [20976.365547] ret_from_fork+0x1f/0x40 ... [20976.438030] task:ip state:D stack: 0 pid:213658 ppid:213627 flags:0x00004084 [20976.446469] Call Trace: [20976.448921] __schedule+0x2d1/0x830 [20976.452414] schedule+0x35/0xa0 [20976.455559] schedule_preempt_disabled+0xa/0x10 [20976.460090] __mutex_lock.isra.7+0x310/0x420 [20976.464364] device_del+0x36/0x3c0 [20976.467772] ice_unplug_aux_dev+0x1a/0x40 [ice] [20976.472313] ice_lag_event_handler+0x2a2/0x520 [ice] [20976.477288] notifier_call_chain+0x47/0x70 [20976.481386] __netdev_upper_dev_link+0x18b/0x280 [20976.489845] bond_enslave+0xe05/0x1790 [bonding] [20976.494475] do_setlink+0x336/0xf50 [20976.502517] __rtnl_newlink+0x529/0x8b0 [20976.543441] rtnl_newlink+0x43/0x60 [20976.546934] rtnetlink_rcv_msg+0x2b1/0x360 [20976.559238] netlink_rcv_skb+0x4c/0x120 [20976.563079] netlink_unicast+0x196/0x230 [20976.567005] netlink_sendmsg+0x204/0x3d0 [20976.570930] sock_sendmsg+0x4c/0x50 [20976.574423] ____sys_sendmsg+0x1eb/0x250 [20976.586807] ___sys_sendmsg+0x7c/0xc0 [20976.606353] __sys_sendmsg+0x57/0xa0 [20976.609930] do_syscall_64+0x5b/0x1a0 [20976.613598] entry_SYSCALL_64_after_hwframe+0x65/0xca 1. Command 'ip link ... set nomaster' causes that ice_plug_aux_dev() is called from ice_service_task() context, aux device is created and associated device->lock is taken. 2. Command 'ip link ... set master...' calls ice's notifier under RTNL lock and that notifier calls ice_unplug_aux_dev(). That function tries to take aux device->lock but this is already taken by ice_plug_aux_dev() in step 1 3. Later ice_plug_aux_dev() tries to take RTNL lock but this is already taken in step 2 4. Dead-lock The patch fixes this issue by following changes: - Bit ICE_FLAG_PLUG_AUX_DEV is kept to be set during ice_plug_aux_dev() call in ice_service_task() - The bit is checked in ice_clear_rdma_cap() and only if it is not set then ice_unplug_aux_dev() is called. If it is set (in other words plugging of aux device was requested and ice_plug_aux_dev() is potentially running) then the function only clears the ---truncated---

Published: July 16, 2024; 9:15:11 AM -0400
V4.0:(not available)
V3.1: 4.7 MEDIUM
V2.0:(not available)
CVE-2022-48841

In the Linux kernel, the following vulnerability has been resolved: ice: fix NULL pointer dereference in ice_update_vsi_tx_ring_stats() It is possible to do NULL pointer dereference in routine that updates Tx ring stats. Currently only stats and bytes are updated when ring pointer is valid, but later on ring is accessed to propagate gathered Tx stats onto VSI stats. Change the existing logic to move to next ring when ring is NULL.

Published: July 16, 2024; 9:15:11 AM -0400
V4.0:(not available)
V3.1: 5.5 MEDIUM
V2.0:(not available)
CVE-2022-48826

In the Linux kernel, the following vulnerability has been resolved: drm/vc4: Fix deadlock on DSI device attach error DSI device attach to DSI host will be done with host device's lock held. Un-registering host in "device attach" error path (ex: probe retry) will result in deadlock with below call trace and non operational DSI display. Startup Call trace: [ 35.043036] rt_mutex_slowlock.constprop.21+0x184/0x1b8 [ 35.043048] mutex_lock_nested+0x7c/0xc8 [ 35.043060] device_del+0x4c/0x3e8 [ 35.043075] device_unregister+0x20/0x40 [ 35.043082] mipi_dsi_remove_device_fn+0x18/0x28 [ 35.043093] device_for_each_child+0x68/0xb0 [ 35.043105] mipi_dsi_host_unregister+0x40/0x90 [ 35.043115] vc4_dsi_host_attach+0xf0/0x120 [vc4] [ 35.043199] mipi_dsi_attach+0x30/0x48 [ 35.043209] tc358762_probe+0x128/0x164 [tc358762] [ 35.043225] mipi_dsi_drv_probe+0x28/0x38 [ 35.043234] really_probe+0xc0/0x318 [ 35.043244] __driver_probe_device+0x80/0xe8 [ 35.043254] driver_probe_device+0xb8/0x118 [ 35.043263] __device_attach_driver+0x98/0xe8 [ 35.043273] bus_for_each_drv+0x84/0xd8 [ 35.043281] __device_attach+0xf0/0x150 [ 35.043290] device_initial_probe+0x1c/0x28 [ 35.043300] bus_probe_device+0xa4/0xb0 [ 35.043308] deferred_probe_work_func+0xa0/0xe0 [ 35.043318] process_one_work+0x254/0x700 [ 35.043330] worker_thread+0x4c/0x448 [ 35.043339] kthread+0x19c/0x1a8 [ 35.043348] ret_from_fork+0x10/0x20 Shutdown Call trace: [ 365.565417] Call trace: [ 365.565423] __switch_to+0x148/0x200 [ 365.565452] __schedule+0x340/0x9c8 [ 365.565467] schedule+0x48/0x110 [ 365.565479] schedule_timeout+0x3b0/0x448 [ 365.565496] wait_for_completion+0xac/0x138 [ 365.565509] __flush_work+0x218/0x4e0 [ 365.565523] flush_work+0x1c/0x28 [ 365.565536] wait_for_device_probe+0x68/0x158 [ 365.565550] device_shutdown+0x24/0x348 [ 365.565561] kernel_restart_prepare+0x40/0x50 [ 365.565578] kernel_restart+0x20/0x70 [ 365.565591] __do_sys_reboot+0x10c/0x220 [ 365.565605] __arm64_sys_reboot+0x2c/0x38 [ 365.565619] invoke_syscall+0x4c/0x110 [ 365.565634] el0_svc_common.constprop.3+0xfc/0x120 [ 365.565648] do_el0_svc+0x2c/0x90 [ 365.565661] el0_svc+0x4c/0xf0 [ 365.565671] el0t_64_sync_handler+0x90/0xb8 [ 365.565682] el0t_64_sync+0x180/0x184

Published: July 16, 2024; 8:15:06 AM -0400
V4.0:(not available)
V3.1: 5.5 MEDIUM
V2.0:(not available)
CVE-2022-48824

In the Linux kernel, the following vulnerability has been resolved: scsi: myrs: Fix crash in error case In myrs_detect(), cs->disable_intr is NULL when privdata->hw_init() fails with non-zero. In this case, myrs_cleanup(cs) will call a NULL ptr and crash the kernel. [ 1.105606] myrs 0000:00:03.0: Unknown Initialization Error 5A [ 1.105872] myrs 0000:00:03.0: Failed to initialize Controller [ 1.106082] BUG: kernel NULL pointer dereference, address: 0000000000000000 [ 1.110774] Call Trace: [ 1.110950] myrs_cleanup+0xe4/0x150 [myrs] [ 1.111135] myrs_probe.cold+0x91/0x56a [myrs] [ 1.111302] ? DAC960_GEM_intr_handler+0x1f0/0x1f0 [myrs] [ 1.111500] local_pci_probe+0x48/0x90

Published: July 16, 2024; 8:15:06 AM -0400
V4.0:(not available)
V3.1: 5.5 MEDIUM
V2.0:(not available)
CVE-2022-48804

In the Linux kernel, the following vulnerability has been resolved: vt_ioctl: fix array_index_nospec in vt_setactivate array_index_nospec ensures that an out-of-bounds value is set to zero on the transient path. Decreasing the value by one afterwards causes a transient integer underflow. vsa.console should be decreased first and then sanitized with array_index_nospec. Kasper Acknowledgements: Jakob Koschel, Brian Johannesmeyer, Kaveh Razavi, Herbert Bos, Cristiano Giuffrida from the VUSec group at VU Amsterdam.

Published: July 16, 2024; 8:15:04 AM -0400
V4.0:(not available)
V3.1: 5.5 MEDIUM
V2.0:(not available)
CVE-2022-48796

In the Linux kernel, the following vulnerability has been resolved: iommu: Fix potential use-after-free during probe Kasan has reported the following use after free on dev->iommu. when a device probe fails and it is in process of freeing dev->iommu in dev_iommu_free function, a deferred_probe_work_func runs in parallel and tries to access dev->iommu->fwspec in of_iommu_configure path thus causing use after free. BUG: KASAN: use-after-free in of_iommu_configure+0xb4/0x4a4 Read of size 8 at addr ffffff87a2f1acb8 by task kworker/u16:2/153 Workqueue: events_unbound deferred_probe_work_func Call trace: dump_backtrace+0x0/0x33c show_stack+0x18/0x24 dump_stack_lvl+0x16c/0x1e0 print_address_description+0x84/0x39c __kasan_report+0x184/0x308 kasan_report+0x50/0x78 __asan_load8+0xc0/0xc4 of_iommu_configure+0xb4/0x4a4 of_dma_configure_id+0x2fc/0x4d4 platform_dma_configure+0x40/0x5c really_probe+0x1b4/0xb74 driver_probe_device+0x11c/0x228 __device_attach_driver+0x14c/0x304 bus_for_each_drv+0x124/0x1b0 __device_attach+0x25c/0x334 device_initial_probe+0x24/0x34 bus_probe_device+0x78/0x134 deferred_probe_work_func+0x130/0x1a8 process_one_work+0x4c8/0x970 worker_thread+0x5c8/0xaec kthread+0x1f8/0x220 ret_from_fork+0x10/0x18 Allocated by task 1: ____kasan_kmalloc+0xd4/0x114 __kasan_kmalloc+0x10/0x1c kmem_cache_alloc_trace+0xe4/0x3d4 __iommu_probe_device+0x90/0x394 probe_iommu_group+0x70/0x9c bus_for_each_dev+0x11c/0x19c bus_iommu_probe+0xb8/0x7d4 bus_set_iommu+0xcc/0x13c arm_smmu_bus_init+0x44/0x130 [arm_smmu] arm_smmu_device_probe+0xb88/0xc54 [arm_smmu] platform_drv_probe+0xe4/0x13c really_probe+0x2c8/0xb74 driver_probe_device+0x11c/0x228 device_driver_attach+0xf0/0x16c __driver_attach+0x80/0x320 bus_for_each_dev+0x11c/0x19c driver_attach+0x38/0x48 bus_add_driver+0x1dc/0x3a4 driver_register+0x18c/0x244 __platform_driver_register+0x88/0x9c init_module+0x64/0xff4 [arm_smmu] do_one_initcall+0x17c/0x2f0 do_init_module+0xe8/0x378 load_module+0x3f80/0x4a40 __se_sys_finit_module+0x1a0/0x1e4 __arm64_sys_finit_module+0x44/0x58 el0_svc_common+0x100/0x264 do_el0_svc+0x38/0xa4 el0_svc+0x20/0x30 el0_sync_handler+0x68/0xac el0_sync+0x160/0x180 Freed by task 1: kasan_set_track+0x4c/0x84 kasan_set_free_info+0x28/0x4c ____kasan_slab_free+0x120/0x15c __kasan_slab_free+0x18/0x28 slab_free_freelist_hook+0x204/0x2fc kfree+0xfc/0x3a4 __iommu_probe_device+0x284/0x394 probe_iommu_group+0x70/0x9c bus_for_each_dev+0x11c/0x19c bus_iommu_probe+0xb8/0x7d4 bus_set_iommu+0xcc/0x13c arm_smmu_bus_init+0x44/0x130 [arm_smmu] arm_smmu_device_probe+0xb88/0xc54 [arm_smmu] platform_drv_probe+0xe4/0x13c really_probe+0x2c8/0xb74 driver_probe_device+0x11c/0x228 device_driver_attach+0xf0/0x16c __driver_attach+0x80/0x320 bus_for_each_dev+0x11c/0x19c driver_attach+0x38/0x48 bus_add_driver+0x1dc/0x3a4 driver_register+0x18c/0x244 __platform_driver_register+0x88/0x9c init_module+0x64/0xff4 [arm_smmu] do_one_initcall+0x17c/0x2f0 do_init_module+0xe8/0x378 load_module+0x3f80/0x4a40 __se_sys_finit_module+0x1a0/0x1e4 __arm64_sys_finit_module+0x44/0x58 el0_svc_common+0x100/0x264 do_el0_svc+0x38/0xa4 el0_svc+0x20/0x30 el0_sync_handler+0x68/0xac el0_sync+0x160/0x180 Fix this by setting dev->iommu to NULL first and then freeing dev_iommu structure in dev_iommu_free function.

Published: July 16, 2024; 8:15:04 AM -0400
V4.0:(not available)
V3.1: 7.8 HIGH
V2.0:(not available)
CVE-2022-48792

In the Linux kernel, the following vulnerability has been resolved: scsi: pm8001: Fix use-after-free for aborted SSP/STP sas_task Currently a use-after-free may occur if a sas_task is aborted by the upper layer before we handle the I/O completion in mpi_ssp_completion() or mpi_sata_completion(). In this case, the following are the two steps in handling those I/O completions: - Call complete() to inform the upper layer handler of completion of the I/O. - Release driver resources associated with the sas_task in pm8001_ccb_task_free() call. When complete() is called, the upper layer may free the sas_task. As such, we should not touch the associated sas_task afterwards, but we do so in the pm8001_ccb_task_free() call. Fix by swapping the complete() and pm8001_ccb_task_free() calls ordering.

Published: July 16, 2024; 8:15:03 AM -0400
V4.0:(not available)
V3.1: 7.8 HIGH
V2.0:(not available)
CVE-2022-48791

In the Linux kernel, the following vulnerability has been resolved: scsi: pm8001: Fix use-after-free for aborted TMF sas_task Currently a use-after-free may occur if a TMF sas_task is aborted before we handle the IO completion in mpi_ssp_completion(). The abort occurs due to timeout. When the timeout occurs, the SAS_TASK_STATE_ABORTED flag is set and the sas_task is freed in pm8001_exec_internal_tmf_task(). However, if the I/O completion occurs later, the I/O completion still thinks that the sas_task is available. Fix this by clearing the ccb->task if the TMF times out - the I/O completion handler does nothing if this pointer is cleared.

Published: July 16, 2024; 8:15:03 AM -0400
V4.0:(not available)
V3.1: 7.8 HIGH
V2.0:(not available)
CVE-2022-48790

In the Linux kernel, the following vulnerability has been resolved: nvme: fix a possible use-after-free in controller reset during load Unlike .queue_rq, in .submit_async_event drivers may not check the ctrl readiness for AER submission. This may lead to a use-after-free condition that was observed with nvme-tcp. The race condition may happen in the following scenario: 1. driver executes its reset_ctrl_work 2. -> nvme_stop_ctrl - flushes ctrl async_event_work 3. ctrl sends AEN which is received by the host, which in turn schedules AEN handling 4. teardown admin queue (which releases the queue socket) 5. AEN processed, submits another AER, calling the driver to submit 6. driver attempts to send the cmd ==> use-after-free In order to fix that, add ctrl state check to validate the ctrl is actually able to accept the AER submission. This addresses the above race in controller resets because the driver during teardown should: 1. change ctrl state to RESETTING 2. flush async_event_work (as well as other async work elements) So after 1,2, any other AER command will find the ctrl state to be RESETTING and bail out without submitting the AER.

Published: July 16, 2024; 8:15:03 AM -0400
V4.0:(not available)
V3.1: 7.0 HIGH
V2.0:(not available)