Search Results (Refine Search)
- Keyword (text search): cpe:2.3:o:linux:linux_kernel:2.6.25:rc1:*:*:*:*:*:*
- CPE Name Search: true
Vuln ID | Summary | CVSS Severity |
---|---|---|
CVE-2024-49897 |
In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Check phantom_stream before it is used dcn32_enable_phantom_stream can return null, so returned value must be checked before used. This fixes 1 NULL_RETURNS issue reported by Coverity. Published: October 21, 2024; 2:15:12 PM -0400 |
V4.0:(not available) V3.1: 5.5 MEDIUM V2.0:(not available) |
CVE-2024-49896 |
In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Check stream before comparing them [WHAT & HOW] amdgpu_dm can pass a null stream to dc_is_stream_unchanged. It is necessary to check for null before dereferencing them. This fixes 1 FORWARD_NULL issue reported by Coverity. Published: October 21, 2024; 2:15:12 PM -0400 |
V4.0:(not available) V3.1: 5.5 MEDIUM V2.0:(not available) |
CVE-2024-49895 |
In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Fix index out of bounds in DCN30 degamma hardware format translation This commit addresses a potential index out of bounds issue in the `cm3_helper_translate_curve_to_degamma_hw_format` function in the DCN30 color management module. The issue could occur when the index 'i' exceeds the number of transfer function points (TRANSFER_FUNC_POINTS). The fix adds a check to ensure 'i' is within bounds before accessing the transfer function points. If 'i' is out of bounds, the function returns false to indicate an error. Reported by smatch: drivers/gpu/drm/amd/amdgpu/../display/dc/dcn30/dcn30_cm_common.c:338 cm3_helper_translate_curve_to_degamma_hw_format() error: buffer overflow 'output_tf->tf_pts.red' 1025 <= s32max drivers/gpu/drm/amd/amdgpu/../display/dc/dcn30/dcn30_cm_common.c:339 cm3_helper_translate_curve_to_degamma_hw_format() error: buffer overflow 'output_tf->tf_pts.green' 1025 <= s32max drivers/gpu/drm/amd/amdgpu/../display/dc/dcn30/dcn30_cm_common.c:340 cm3_helper_translate_curve_to_degamma_hw_format() error: buffer overflow 'output_tf->tf_pts.blue' 1025 <= s32max Published: October 21, 2024; 2:15:11 PM -0400 |
V4.0:(not available) V3.1: 7.8 HIGH V2.0:(not available) |
CVE-2024-49894 |
In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Fix index out of bounds in degamma hardware format translation Fixes index out of bounds issue in `cm_helper_translate_curve_to_degamma_hw_format` function. The issue could occur when the index 'i' exceeds the number of transfer function points (TRANSFER_FUNC_POINTS). The fix adds a check to ensure 'i' is within bounds before accessing the transfer function points. If 'i' is out of bounds the function returns false to indicate an error. Reported by smatch: drivers/gpu/drm/amd/amdgpu/../display/dc/dcn10/dcn10_cm_common.c:594 cm_helper_translate_curve_to_degamma_hw_format() error: buffer overflow 'output_tf->tf_pts.red' 1025 <= s32max drivers/gpu/drm/amd/amdgpu/../display/dc/dcn10/dcn10_cm_common.c:595 cm_helper_translate_curve_to_degamma_hw_format() error: buffer overflow 'output_tf->tf_pts.green' 1025 <= s32max drivers/gpu/drm/amd/amdgpu/../display/dc/dcn10/dcn10_cm_common.c:596 cm_helper_translate_curve_to_degamma_hw_format() error: buffer overflow 'output_tf->tf_pts.blue' 1025 <= s32max Published: October 21, 2024; 2:15:11 PM -0400 |
V4.0:(not available) V3.1: 7.8 HIGH V2.0:(not available) |
CVE-2024-49893 |
In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Check stream_status before it is used [WHAT & HOW] dc_state_get_stream_status can return null, and therefore null must be checked before stream_status is used. This fixes 1 NULL_RETURNS issue reported by Coverity. Published: October 21, 2024; 2:15:11 PM -0400 |
V4.0:(not available) V3.1: 5.5 MEDIUM V2.0:(not available) |
CVE-2024-49892 |
In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Initialize get_bytes_per_element's default to 1 Variables, used as denominators and maybe not assigned to other values, should not be 0. bytes_per_element_y & bytes_per_element_c are initialized by get_bytes_per_element() which should never return 0. This fixes 10 DIVIDE_BY_ZERO issues reported by Coverity. Published: October 21, 2024; 2:15:11 PM -0400 |
V4.0:(not available) V3.1: 5.5 MEDIUM V2.0:(not available) |
CVE-2024-49891 |
In the Linux kernel, the following vulnerability has been resolved: scsi: lpfc: Validate hdwq pointers before dereferencing in reset/errata paths When the HBA is undergoing a reset or is handling an errata event, NULL ptr dereference crashes may occur in routines such as lpfc_sli_flush_io_rings(), lpfc_dev_loss_tmo_callbk(), or lpfc_abort_handler(). Add NULL ptr checks before dereferencing hdwq pointers that may have been freed due to operations colliding with a reset or errata event handler. Published: October 21, 2024; 2:15:11 PM -0400 |
V4.0:(not available) V3.1: 5.5 MEDIUM V2.0:(not available) |
CVE-2024-49890 |
In the Linux kernel, the following vulnerability has been resolved: drm/amd/pm: ensure the fw_info is not null before using it This resolves the dereference null return value warning reported by Coverity. Published: October 21, 2024; 2:15:11 PM -0400 |
V4.0:(not available) V3.1: 5.5 MEDIUM V2.0:(not available) |
CVE-2024-49889 |
In the Linux kernel, the following vulnerability has been resolved: ext4: avoid use-after-free in ext4_ext_show_leaf() In ext4_find_extent(), path may be freed by error or be reallocated, so using a previously saved *ppath may have been freed and thus may trigger use-after-free, as follows: ext4_split_extent path = *ppath; ext4_split_extent_at(ppath) path = ext4_find_extent(ppath) ext4_split_extent_at(ppath) // ext4_find_extent fails to free path // but zeroout succeeds ext4_ext_show_leaf(inode, path) eh = path[depth].p_hdr // path use-after-free !!! Similar to ext4_split_extent_at(), we use *ppath directly as an input to ext4_ext_show_leaf(). Fix a spelling error by the way. Same problem in ext4_ext_handle_unwritten_extents(). Since 'path' is only used in ext4_ext_show_leaf(), remove 'path' and use *ppath directly. This issue is triggered only when EXT_DEBUG is defined and therefore does not affect functionality. Published: October 21, 2024; 2:15:11 PM -0400 |
V4.0:(not available) V3.1: 7.8 HIGH V2.0:(not available) |
CVE-2024-49888 |
In the Linux kernel, the following vulnerability has been resolved: bpf: Fix a sdiv overflow issue Zac Ecob reported a problem where a bpf program may cause kernel crash due to the following error: Oops: divide error: 0000 [#1] PREEMPT SMP KASAN PTI The failure is due to the below signed divide: LLONG_MIN/-1 where LLONG_MIN equals to -9,223,372,036,854,775,808. LLONG_MIN/-1 is supposed to give a positive number 9,223,372,036,854,775,808, but it is impossible since for 64-bit system, the maximum positive number is 9,223,372,036,854,775,807. On x86_64, LLONG_MIN/-1 will cause a kernel exception. On arm64, the result for LLONG_MIN/-1 is LLONG_MIN. Further investigation found all the following sdiv/smod cases may trigger an exception when bpf program is running on x86_64 platform: - LLONG_MIN/-1 for 64bit operation - INT_MIN/-1 for 32bit operation - LLONG_MIN%-1 for 64bit operation - INT_MIN%-1 for 32bit operation where -1 can be an immediate or in a register. On arm64, there are no exceptions: - LLONG_MIN/-1 = LLONG_MIN - INT_MIN/-1 = INT_MIN - LLONG_MIN%-1 = 0 - INT_MIN%-1 = 0 where -1 can be an immediate or in a register. Insn patching is needed to handle the above cases and the patched codes produced results aligned with above arm64 result. The below are pseudo codes to handle sdiv/smod exceptions including both divisor -1 and divisor 0 and the divisor is stored in a register. sdiv: tmp = rX tmp += 1 /* [-1, 0] -> [0, 1] if tmp >(unsigned) 1 goto L2 if tmp == 0 goto L1 rY = 0 L1: rY = -rY; goto L3 L2: rY /= rX L3: smod: tmp = rX tmp += 1 /* [-1, 0] -> [0, 1] if tmp >(unsigned) 1 goto L1 if tmp == 1 (is64 ? goto L2 : goto L3) rY = 0; goto L2 L1: rY %= rX L2: goto L4 // only when !is64 L3: wY = wY // only when !is64 L4: [1] https://lore.kernel.org/bpf/tPJLTEh7S_DxFEqAI2Ji5MBSoZVg7_G-Py2iaZpAaWtM961fFTWtsnlzwvTbzBzaUzwQAoNATXKUlt0LZOFgnDcIyKCswAnAGdUF3LBrhGQ=@protonmail.com/ Published: October 21, 2024; 2:15:11 PM -0400 |
V4.0:(not available) V3.1: 5.5 MEDIUM V2.0:(not available) |
CVE-2024-49875 |
In the Linux kernel, the following vulnerability has been resolved: nfsd: map the EBADMSG to nfserr_io to avoid warning Ext4 will throw -EBADMSG through ext4_readdir when a checksum error occurs, resulting in the following WARNING. Fix it by mapping EBADMSG to nfserr_io. nfsd_buffered_readdir iterate_dir // -EBADMSG -74 ext4_readdir // .iterate_shared ext4_dx_readdir ext4_htree_fill_tree htree_dirblock_to_tree ext4_read_dirblock __ext4_read_dirblock ext4_dirblock_csum_verify warn_no_space_for_csum __warn_no_space_for_csum return ERR_PTR(-EFSBADCRC) // -EBADMSG -74 nfserrno // WARNING [ 161.115610] ------------[ cut here ]------------ [ 161.116465] nfsd: non-standard errno: -74 [ 161.117315] WARNING: CPU: 1 PID: 780 at fs/nfsd/nfsproc.c:878 nfserrno+0x9d/0xd0 [ 161.118596] Modules linked in: [ 161.119243] CPU: 1 PID: 780 Comm: nfsd Not tainted 5.10.0-00014-g79679361fd5d #138 [ 161.120684] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.14.0-0-g155821a1990b-prebuilt.qe mu.org 04/01/2014 [ 161.123601] RIP: 0010:nfserrno+0x9d/0xd0 [ 161.124676] Code: 0f 87 da 30 dd 00 83 e3 01 b8 00 00 00 05 75 d7 44 89 ee 48 c7 c7 c0 57 24 98 89 44 24 04 c6 05 ce 2b 61 03 01 e8 99 20 d8 00 <0f> 0b 8b 44 24 04 eb b5 4c 89 e6 48 c7 c7 a0 6d a4 99 e8 cc 15 33 [ 161.127797] RSP: 0018:ffffc90000e2f9c0 EFLAGS: 00010286 [ 161.128794] RAX: 0000000000000000 RBX: 0000000000000000 RCX: 0000000000000000 [ 161.130089] RDX: 1ffff1103ee16f6d RSI: 0000000000000008 RDI: fffff520001c5f2a [ 161.131379] RBP: 0000000000000022 R08: 0000000000000001 R09: ffff8881f70c1827 [ 161.132664] R10: ffffed103ee18304 R11: 0000000000000001 R12: 0000000000000021 [ 161.133949] R13: 00000000ffffffb6 R14: ffff8881317c0000 R15: ffffc90000e2fbd8 [ 161.135244] FS: 0000000000000000(0000) GS:ffff8881f7080000(0000) knlGS:0000000000000000 [ 161.136695] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 161.137761] CR2: 00007fcaad70b348 CR3: 0000000144256006 CR4: 0000000000770ee0 [ 161.139041] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [ 161.140291] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [ 161.141519] PKRU: 55555554 [ 161.142076] Call Trace: [ 161.142575] ? __warn+0x9b/0x140 [ 161.143229] ? nfserrno+0x9d/0xd0 [ 161.143872] ? report_bug+0x125/0x150 [ 161.144595] ? handle_bug+0x41/0x90 [ 161.145284] ? exc_invalid_op+0x14/0x70 [ 161.146009] ? asm_exc_invalid_op+0x12/0x20 [ 161.146816] ? nfserrno+0x9d/0xd0 [ 161.147487] nfsd_buffered_readdir+0x28b/0x2b0 [ 161.148333] ? nfsd4_encode_dirent_fattr+0x380/0x380 [ 161.149258] ? nfsd_buffered_filldir+0xf0/0xf0 [ 161.150093] ? wait_for_concurrent_writes+0x170/0x170 [ 161.151004] ? generic_file_llseek_size+0x48/0x160 [ 161.151895] nfsd_readdir+0x132/0x190 [ 161.152606] ? nfsd4_encode_dirent_fattr+0x380/0x380 [ 161.153516] ? nfsd_unlink+0x380/0x380 [ 161.154256] ? override_creds+0x45/0x60 [ 161.155006] nfsd4_encode_readdir+0x21a/0x3d0 [ 161.155850] ? nfsd4_encode_readlink+0x210/0x210 [ 161.156731] ? write_bytes_to_xdr_buf+0x97/0xe0 [ 161.157598] ? __write_bytes_to_xdr_buf+0xd0/0xd0 [ 161.158494] ? lock_downgrade+0x90/0x90 [ 161.159232] ? nfs4svc_decode_voidarg+0x10/0x10 [ 161.160092] nfsd4_encode_operation+0x15a/0x440 [ 161.160959] nfsd4_proc_compound+0x718/0xe90 [ 161.161818] nfsd_dispatch+0x18e/0x2c0 [ 161.162586] svc_process_common+0x786/0xc50 [ 161.163403] ? nfsd_svc+0x380/0x380 [ 161.164137] ? svc_printk+0x160/0x160 [ 161.164846] ? svc_xprt_do_enqueue.part.0+0x365/0x380 [ 161.165808] ? nfsd_svc+0x380/0x380 [ 161.166523] ? rcu_is_watching+0x23/0x40 [ 161.167309] svc_process+0x1a5/0x200 [ 161.168019] nfsd+0x1f5/0x380 [ 161.168663] ? nfsd_shutdown_threads+0x260/0x260 [ 161.169554] kthread+0x1c4/0x210 [ 161.170224] ? kthread_insert_work_sanity_check+0x80/0x80 [ 161.171246] ret_from_fork+0x1f/0x30 Published: October 21, 2024; 2:15:09 PM -0400 |
V4.0:(not available) V3.1: 5.5 MEDIUM V2.0:(not available) |
CVE-2024-49868 |
In the Linux kernel, the following vulnerability has been resolved: btrfs: fix a NULL pointer dereference when failed to start a new trasacntion [BUG] Syzbot reported a NULL pointer dereference with the following crash: FAULT_INJECTION: forcing a failure. start_transaction+0x830/0x1670 fs/btrfs/transaction.c:676 prepare_to_relocate+0x31f/0x4c0 fs/btrfs/relocation.c:3642 relocate_block_group+0x169/0xd20 fs/btrfs/relocation.c:3678 ... BTRFS info (device loop0): balance: ended with status: -12 Oops: general protection fault, probably for non-canonical address 0xdffffc00000000cc: 0000 [#1] PREEMPT SMP KASAN NOPTI KASAN: null-ptr-deref in range [0x0000000000000660-0x0000000000000667] RIP: 0010:btrfs_update_reloc_root+0x362/0xa80 fs/btrfs/relocation.c:926 Call Trace: <TASK> commit_fs_roots+0x2ee/0x720 fs/btrfs/transaction.c:1496 btrfs_commit_transaction+0xfaf/0x3740 fs/btrfs/transaction.c:2430 del_balance_item fs/btrfs/volumes.c:3678 [inline] reset_balance_state+0x25e/0x3c0 fs/btrfs/volumes.c:3742 btrfs_balance+0xead/0x10c0 fs/btrfs/volumes.c:4574 btrfs_ioctl_balance+0x493/0x7c0 fs/btrfs/ioctl.c:3673 vfs_ioctl fs/ioctl.c:51 [inline] __do_sys_ioctl fs/ioctl.c:907 [inline] __se_sys_ioctl+0xf9/0x170 fs/ioctl.c:893 do_syscall_x64 arch/x86/entry/common.c:52 [inline] do_syscall_64+0xf3/0x230 arch/x86/entry/common.c:83 entry_SYSCALL_64_after_hwframe+0x77/0x7f [CAUSE] The allocation failure happens at the start_transaction() inside prepare_to_relocate(), and during the error handling we call unset_reloc_control(), which makes fs_info->balance_ctl to be NULL. Then we continue the error path cleanup in btrfs_balance() by calling reset_balance_state() which will call del_balance_item() to fully delete the balance item in the root tree. However during the small window between set_reloc_contrl() and unset_reloc_control(), we can have a subvolume tree update and created a reloc_root for that subvolume. Then we go into the final btrfs_commit_transaction() of del_balance_item(), and into btrfs_update_reloc_root() inside commit_fs_roots(). That function checks if fs_info->reloc_ctl is in the merge_reloc_tree stage, but since fs_info->reloc_ctl is NULL, it results a NULL pointer dereference. [FIX] Just add extra check on fs_info->reloc_ctl inside btrfs_update_reloc_root(), before checking fs_info->reloc_ctl->merge_reloc_tree. That DEAD_RELOC_TREE handling is to prevent further modification to the reloc tree during merge stage, but since there is no reloc_ctl at all, we do not need to bother that. Published: October 21, 2024; 2:15:06 PM -0400 |
V4.0:(not available) V3.1: 5.5 MEDIUM V2.0:(not available) |
CVE-2024-49867 |
In the Linux kernel, the following vulnerability has been resolved: btrfs: wait for fixup workers before stopping cleaner kthread during umount During unmount, at close_ctree(), we have the following steps in this order: 1) Park the cleaner kthread - this doesn't destroy the kthread, it basically halts its execution (wake ups against it work but do nothing); 2) We stop the cleaner kthread - this results in freeing the respective struct task_struct; 3) We call btrfs_stop_all_workers() which waits for any jobs running in all the work queues and then free the work queues. Syzbot reported a case where a fixup worker resulted in a crash when doing a delayed iput on its inode while attempting to wake up the cleaner at btrfs_add_delayed_iput(), because the task_struct of the cleaner kthread was already freed. This can happen during unmount because we don't wait for any fixup workers still running before we call kthread_stop() against the cleaner kthread, which stops and free all its resources. Fix this by waiting for any fixup workers at close_ctree() before we call kthread_stop() against the cleaner and run pending delayed iputs. The stack traces reported by syzbot were the following: BUG: KASAN: slab-use-after-free in __lock_acquire+0x77/0x2050 kernel/locking/lockdep.c:5065 Read of size 8 at addr ffff8880272a8a18 by task kworker/u8:3/52 CPU: 1 UID: 0 PID: 52 Comm: kworker/u8:3 Not tainted 6.12.0-rc1-syzkaller #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 09/13/2024 Workqueue: btrfs-fixup btrfs_work_helper Call Trace: <TASK> __dump_stack lib/dump_stack.c:94 [inline] dump_stack_lvl+0x241/0x360 lib/dump_stack.c:120 print_address_description mm/kasan/report.c:377 [inline] print_report+0x169/0x550 mm/kasan/report.c:488 kasan_report+0x143/0x180 mm/kasan/report.c:601 __lock_acquire+0x77/0x2050 kernel/locking/lockdep.c:5065 lock_acquire+0x1ed/0x550 kernel/locking/lockdep.c:5825 __raw_spin_lock_irqsave include/linux/spinlock_api_smp.h:110 [inline] _raw_spin_lock_irqsave+0xd5/0x120 kernel/locking/spinlock.c:162 class_raw_spinlock_irqsave_constructor include/linux/spinlock.h:551 [inline] try_to_wake_up+0xb0/0x1480 kernel/sched/core.c:4154 btrfs_writepage_fixup_worker+0xc16/0xdf0 fs/btrfs/inode.c:2842 btrfs_work_helper+0x390/0xc50 fs/btrfs/async-thread.c:314 process_one_work kernel/workqueue.c:3229 [inline] process_scheduled_works+0xa63/0x1850 kernel/workqueue.c:3310 worker_thread+0x870/0xd30 kernel/workqueue.c:3391 kthread+0x2f0/0x390 kernel/kthread.c:389 ret_from_fork+0x4b/0x80 arch/x86/kernel/process.c:147 ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:244 </TASK> Allocated by task 2: kasan_save_stack mm/kasan/common.c:47 [inline] kasan_save_track+0x3f/0x80 mm/kasan/common.c:68 unpoison_slab_object mm/kasan/common.c:319 [inline] __kasan_slab_alloc+0x66/0x80 mm/kasan/common.c:345 kasan_slab_alloc include/linux/kasan.h:247 [inline] slab_post_alloc_hook mm/slub.c:4086 [inline] slab_alloc_node mm/slub.c:4135 [inline] kmem_cache_alloc_node_noprof+0x16b/0x320 mm/slub.c:4187 alloc_task_struct_node kernel/fork.c:180 [inline] dup_task_struct+0x57/0x8c0 kernel/fork.c:1107 copy_process+0x5d1/0x3d50 kernel/fork.c:2206 kernel_clone+0x223/0x880 kernel/fork.c:2787 kernel_thread+0x1bc/0x240 kernel/fork.c:2849 create_kthread kernel/kthread.c:412 [inline] kthreadd+0x60d/0x810 kernel/kthread.c:765 ret_from_fork+0x4b/0x80 arch/x86/kernel/process.c:147 ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:244 Freed by task 61: kasan_save_stack mm/kasan/common.c:47 [inline] kasan_save_track+0x3f/0x80 mm/kasan/common.c:68 kasan_save_free_info+0x40/0x50 mm/kasan/generic.c:579 poison_slab_object mm/kasan/common.c:247 [inline] __kasan_slab_free+0x59/0x70 mm/kasan/common.c:264 kasan_slab_free include/linux/kasan.h:230 [inline] slab_free_h ---truncated--- Published: October 21, 2024; 2:15:06 PM -0400 |
V4.0:(not available) V3.1: 5.5 MEDIUM V2.0:(not available) |
CVE-2024-49859 |
In the Linux kernel, the following vulnerability has been resolved: f2fs: fix to check atomic_file in f2fs ioctl interfaces Some f2fs ioctl interfaces like f2fs_ioc_set_pin_file(), f2fs_move_file_range(), and f2fs_defragment_range() missed to check atomic_write status, which may cause potential race issue, fix it. Published: October 21, 2024; 9:15:06 AM -0400 |
V4.0:(not available) V3.1: 4.7 MEDIUM V2.0:(not available) |
CVE-2024-49858 |
In the Linux kernel, the following vulnerability has been resolved: efistub/tpm: Use ACPI reclaim memory for event log to avoid corruption The TPM event log table is a Linux specific construct, where the data produced by the GetEventLog() boot service is cached in memory, and passed on to the OS using an EFI configuration table. The use of EFI_LOADER_DATA here results in the region being left unreserved in the E820 memory map constructed by the EFI stub, and this is the memory description that is passed on to the incoming kernel by kexec, which is therefore unaware that the region should be reserved. Even though the utility of the TPM2 event log after a kexec is questionable, any corruption might send the parsing code off into the weeds and crash the kernel. So let's use EFI_ACPI_RECLAIM_MEMORY instead, which is always treated as reserved by the E820 conversion logic. Published: October 21, 2024; 9:15:06 AM -0400 |
V4.0:(not available) V3.1: 5.5 MEDIUM V2.0:(not available) |
CVE-2024-47745 |
In the Linux kernel, the following vulnerability has been resolved: mm: call the security_mmap_file() LSM hook in remap_file_pages() The remap_file_pages syscall handler calls do_mmap() directly, which doesn't contain the LSM security check. And if the process has called personality(READ_IMPLIES_EXEC) before and remap_file_pages() is called for RW pages, this will actually result in remapping the pages to RWX, bypassing a W^X policy enforced by SELinux. So we should check prot by security_mmap_file LSM hook in the remap_file_pages syscall handler before do_mmap() is called. Otherwise, it potentially permits an attacker to bypass a W^X policy enforced by SELinux. The bypass is similar to CVE-2016-10044, which bypass the same thing via AIO and can be found in [1]. The PoC: $ cat > test.c int main(void) { size_t pagesz = sysconf(_SC_PAGE_SIZE); int mfd = syscall(SYS_memfd_create, "test", 0); const char *buf = mmap(NULL, 4 * pagesz, PROT_READ | PROT_WRITE, MAP_SHARED, mfd, 0); unsigned int old = syscall(SYS_personality, 0xffffffff); syscall(SYS_personality, READ_IMPLIES_EXEC | old); syscall(SYS_remap_file_pages, buf, pagesz, 0, 2, 0); syscall(SYS_personality, old); // show the RWX page exists even if W^X policy is enforced int fd = open("/proc/self/maps", O_RDONLY); unsigned char buf2[1024]; while (1) { int ret = read(fd, buf2, 1024); if (ret <= 0) break; write(1, buf2, ret); } close(fd); } $ gcc test.c -o test $ ./test | grep rwx 7f1836c34000-7f1836c35000 rwxs 00002000 00:01 2050 /memfd:test (deleted) [PM: subject line tweaks] Published: October 21, 2024; 9:15:04 AM -0400 |
V4.0:(not available) V3.1: 7.8 HIGH V2.0:(not available) |
CVE-2024-47726 |
In the Linux kernel, the following vulnerability has been resolved: f2fs: fix to wait dio completion It should wait all existing dio write IOs before block removal, otherwise, previous direct write IO may overwrite data in the block which may be reused by other inode. Published: October 21, 2024; 9:15:02 AM -0400 |
V4.0:(not available) V3.1: 6.5 MEDIUM V2.0:(not available) |
CVE-2024-47723 |
In the Linux kernel, the following vulnerability has been resolved: jfs: fix out-of-bounds in dbNextAG() and diAlloc() In dbNextAG() , there is no check for the case where bmp->db_numag is greater or same than MAXAG due to a polluted image, which causes an out-of-bounds. Therefore, a bounds check should be added in dbMount(). And in dbNextAG(), a check for the case where agpref is greater than bmp->db_numag should be added, so an out-of-bounds exception should be prevented. Additionally, a check for the case where agno is greater or same than MAXAG should be added in diAlloc() to prevent out-of-bounds. Published: October 21, 2024; 9:15:02 AM -0400 |
V4.0:(not available) V3.1: 7.1 HIGH V2.0:(not available) |
CVE-2024-47704 |
In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Check link_res->hpo_dp_link_enc before using it [WHAT & HOW] Functions dp_enable_link_phy and dp_disable_link_phy can pass link_res without initializing hpo_dp_link_enc and it is necessary to check for null before dereferencing. This fixes 2 FORWARD_NULL issues reported by Coverity. Published: October 21, 2024; 8:15:06 AM -0400 |
V4.0:(not available) V3.1: 5.5 MEDIUM V2.0:(not available) |
CVE-2024-47683 |
In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Skip Recompute DSC Params if no Stream on Link [why] Encounter NULL pointer dereference uner mst + dsc setup. BUG: kernel NULL pointer dereference, address: 0000000000000008 PGD 0 P4D 0 Oops: 0000 [#1] PREEMPT SMP NOPTI CPU: 4 PID: 917 Comm: sway Not tainted 6.3.9-arch1-1 #1 124dc55df4f5272ccb409f39ef4872fc2b3376a2 Hardware name: LENOVO 20NKS01Y00/20NKS01Y00, BIOS R12ET61W(1.31 ) 07/28/2022 RIP: 0010:drm_dp_atomic_find_time_slots+0x5e/0x260 [drm_display_helper] Code: 01 00 00 48 8b 85 60 05 00 00 48 63 80 88 00 00 00 3b 43 28 0f 8d 2e 01 00 00 48 8b 53 30 48 8d 04 80 48 8d 04 c2 48 8b 40 18 <48> 8> RSP: 0018:ffff960cc2df77d8 EFLAGS: 00010293 RAX: 0000000000000000 RBX: ffff8afb87e81280 RCX: 0000000000000224 RDX: ffff8afb9ee37c00 RSI: ffff8afb8da1a578 RDI: ffff8afb87e81280 RBP: ffff8afb83d67000 R08: 0000000000000001 R09: ffff8afb9652f850 R10: ffff960cc2df7908 R11: 0000000000000002 R12: 0000000000000000 R13: ffff8afb8d7688a0 R14: ffff8afb8da1a578 R15: 0000000000000224 FS: 00007f4dac35ce00(0000) GS:ffff8afe30b00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000000008 CR3: 000000010ddc6000 CR4: 00000000003506e0 Call Trace: <TASK> ? __die+0x23/0x70 ? page_fault_oops+0x171/0x4e0 ? plist_add+0xbe/0x100 ? exc_page_fault+0x7c/0x180 ? asm_exc_page_fault+0x26/0x30 ? drm_dp_atomic_find_time_slots+0x5e/0x260 [drm_display_helper 0e67723696438d8e02b741593dd50d80b44c2026] ? drm_dp_atomic_find_time_slots+0x28/0x260 [drm_display_helper 0e67723696438d8e02b741593dd50d80b44c2026] compute_mst_dsc_configs_for_link+0x2ff/0xa40 [amdgpu 62e600d2a75e9158e1cd0a243bdc8e6da040c054] ? fill_plane_buffer_attributes+0x419/0x510 [amdgpu 62e600d2a75e9158e1cd0a243bdc8e6da040c054] compute_mst_dsc_configs_for_state+0x1e1/0x250 [amdgpu 62e600d2a75e9158e1cd0a243bdc8e6da040c054] amdgpu_dm_atomic_check+0xecd/0x1190 [amdgpu 62e600d2a75e9158e1cd0a243bdc8e6da040c054] drm_atomic_check_only+0x5c5/0xa40 drm_mode_atomic_ioctl+0x76e/0xbc0 [how] dsc recompute should be skipped if no mode change detected on the new request. If detected, keep checking whether the stream is already on current state or not. Published: October 21, 2024; 8:15:05 AM -0400 |
V4.0:(not available) V3.1: 5.5 MEDIUM V2.0:(not available) |