U.S. flag   An official website of the United States government
Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Https

Secure .gov websites use HTTPS
A lock (Dot gov) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Results (Refine Search)

Search Parameters:
  • Keyword (text search): cpe:2.3:o:linux:linux_kernel:3.1.1:*:*:*:*:*:*:*
  • CPE Name Search: true
There are 2,251 matching records.
Displaying matches 121 through 140.
Vuln ID Summary CVSS Severity
CVE-2024-39277

In the Linux kernel, the following vulnerability has been resolved: dma-mapping: benchmark: handle NUMA_NO_NODE correctly cpumask_of_node() can be called for NUMA_NO_NODE inside do_map_benchmark() resulting in the following sanitizer report: UBSAN: array-index-out-of-bounds in ./arch/x86/include/asm/topology.h:72:28 index -1 is out of range for type 'cpumask [64][1]' CPU: 1 PID: 990 Comm: dma_map_benchma Not tainted 6.9.0-rc6 #29 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996) Call Trace: <TASK> dump_stack_lvl (lib/dump_stack.c:117) ubsan_epilogue (lib/ubsan.c:232) __ubsan_handle_out_of_bounds (lib/ubsan.c:429) cpumask_of_node (arch/x86/include/asm/topology.h:72) [inline] do_map_benchmark (kernel/dma/map_benchmark.c:104) map_benchmark_ioctl (kernel/dma/map_benchmark.c:246) full_proxy_unlocked_ioctl (fs/debugfs/file.c:333) __x64_sys_ioctl (fs/ioctl.c:890) do_syscall_64 (arch/x86/entry/common.c:83) entry_SYSCALL_64_after_hwframe (arch/x86/entry/entry_64.S:130) Use cpumask_of_node() in place when binding a kernel thread to a cpuset of a particular node. Note that the provided node id is checked inside map_benchmark_ioctl(). It's just a NUMA_NO_NODE case which is not handled properly later. Found by Linux Verification Center (linuxtesting.org).

Published: June 21, 2024; 8:15:11 AM -0400
V4.0:(not available)
V3.1: 7.8 HIGH
V2.0:(not available)
CVE-2024-38780

In the Linux kernel, the following vulnerability has been resolved: dma-buf/sw-sync: don't enable IRQ from sync_print_obj() Since commit a6aa8fca4d79 ("dma-buf/sw-sync: Reduce irqsave/irqrestore from known context") by error replaced spin_unlock_irqrestore() with spin_unlock_irq() for both sync_debugfs_show() and sync_print_obj() despite sync_print_obj() is called from sync_debugfs_show(), lockdep complains inconsistent lock state warning. Use plain spin_{lock,unlock}() for sync_print_obj(), for sync_debugfs_show() is already using spin_{lock,unlock}_irq().

Published: June 21, 2024; 8:15:11 AM -0400
V4.0:(not available)
V3.1: 5.5 MEDIUM
V2.0:(not available)
CVE-2024-36481

In the Linux kernel, the following vulnerability has been resolved: tracing/probes: fix error check in parse_btf_field() btf_find_struct_member() might return NULL or an error via the ERR_PTR() macro. However, its caller in parse_btf_field() only checks for the NULL condition. Fix this by using IS_ERR() and returning the error up the stack.

Published: June 21, 2024; 8:15:11 AM -0400
V4.0:(not available)
V3.1: 5.5 MEDIUM
V2.0:(not available)
CVE-2024-36477

In the Linux kernel, the following vulnerability has been resolved: tpm_tis_spi: Account for SPI header when allocating TPM SPI xfer buffer The TPM SPI transfer mechanism uses MAX_SPI_FRAMESIZE for computing the maximum transfer length and the size of the transfer buffer. As such, it does not account for the 4 bytes of header that prepends the SPI data frame. This can result in out-of-bounds accesses and was confirmed with KASAN. Introduce SPI_HDRSIZE to account for the header and use to allocate the transfer buffer.

Published: June 21, 2024; 8:15:11 AM -0400
V4.0:(not available)
V3.1: 7.8 HIGH
V2.0:(not available)
CVE-2024-36288

In the Linux kernel, the following vulnerability has been resolved: SUNRPC: Fix loop termination condition in gss_free_in_token_pages() The in_token->pages[] array is not NULL terminated. This results in the following KASAN splat: KASAN: maybe wild-memory-access in range [0x04a2013400000008-0x04a201340000000f]

Published: June 21, 2024; 8:15:10 AM -0400
V4.0:(not available)
V3.1: 5.5 MEDIUM
V2.0:(not available)
CVE-2022-48741

In the Linux kernel, the following vulnerability has been resolved: ovl: fix NULL pointer dereference in copy up warning This patch is fixing a NULL pointer dereference to get a recently introduced warning message working.

Published: June 20, 2024; 8:15:12 AM -0400
V4.0:(not available)
V3.1: 5.5 MEDIUM
V2.0:(not available)
CVE-2022-48740

In the Linux kernel, the following vulnerability has been resolved: selinux: fix double free of cond_list on error paths On error path from cond_read_list() and duplicate_policydb_cond_list() the cond_list_destroy() gets called a second time in caller functions, resulting in NULL pointer deref. Fix this by resetting the cond_list_len to 0 in cond_list_destroy(), making subsequent calls a noop. Also consistently reset the cond_list pointer to NULL after freeing. [PM: fix line lengths in the description]

Published: June 20, 2024; 8:15:12 AM -0400
V4.0:(not available)
V3.1: 7.8 HIGH
V2.0:(not available)
CVE-2022-48735

In the Linux kernel, the following vulnerability has been resolved: ALSA: hda: Fix UAF of leds class devs at unbinding The LED class devices that are created by HD-audio codec drivers are registered via devm_led_classdev_register() and associated with the HD-audio codec device. Unfortunately, it turned out that the devres release doesn't work for this case; namely, since the codec resource release happens before the devm call chain, it triggers a NULL dereference or a UAF for a stale set_brightness_delay callback. For fixing the bug, this patch changes the LED class device register and unregister in a manual manner without devres, keeping the instances in hda_gen_spec.

Published: June 20, 2024; 8:15:11 AM -0400
V4.0:(not available)
V3.1: 7.8 HIGH
V2.0:(not available)
CVE-2022-48734

In the Linux kernel, the following vulnerability has been resolved: btrfs: fix deadlock between quota disable and qgroup rescan worker Quota disable ioctl starts a transaction before waiting for the qgroup rescan worker completes. However, this wait can be infinite and results in deadlock because of circular dependency among the quota disable ioctl, the qgroup rescan worker and the other task with transaction such as block group relocation task. The deadlock happens with the steps following: 1) Task A calls ioctl to disable quota. It starts a transaction and waits for qgroup rescan worker completes. 2) Task B such as block group relocation task starts a transaction and joins to the transaction that task A started. Then task B commits to the transaction. In this commit, task B waits for a commit by task A. 3) Task C as the qgroup rescan worker starts its job and starts a transaction. In this transaction start, task C waits for completion of the transaction that task A started and task B committed. This deadlock was found with fstests test case btrfs/115 and a zoned null_blk device. The test case enables and disables quota, and the block group reclaim was triggered during the quota disable by chance. The deadlock was also observed by running quota enable and disable in parallel with 'btrfs balance' command on regular null_blk devices. An example report of the deadlock: [372.469894] INFO: task kworker/u16:6:103 blocked for more than 122 seconds. [372.479944] Not tainted 5.16.0-rc8 #7 [372.485067] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. [372.493898] task:kworker/u16:6 state:D stack: 0 pid: 103 ppid: 2 flags:0x00004000 [372.503285] Workqueue: btrfs-qgroup-rescan btrfs_work_helper [btrfs] [372.510782] Call Trace: [372.514092] <TASK> [372.521684] __schedule+0xb56/0x4850 [372.530104] ? io_schedule_timeout+0x190/0x190 [372.538842] ? lockdep_hardirqs_on+0x7e/0x100 [372.547092] ? _raw_spin_unlock_irqrestore+0x3e/0x60 [372.555591] schedule+0xe0/0x270 [372.561894] btrfs_commit_transaction+0x18bb/0x2610 [btrfs] [372.570506] ? btrfs_apply_pending_changes+0x50/0x50 [btrfs] [372.578875] ? free_unref_page+0x3f2/0x650 [372.585484] ? finish_wait+0x270/0x270 [372.591594] ? release_extent_buffer+0x224/0x420 [btrfs] [372.599264] btrfs_qgroup_rescan_worker+0xc13/0x10c0 [btrfs] [372.607157] ? lock_release+0x3a9/0x6d0 [372.613054] ? btrfs_qgroup_account_extent+0xda0/0xda0 [btrfs] [372.620960] ? do_raw_spin_lock+0x11e/0x250 [372.627137] ? rwlock_bug.part.0+0x90/0x90 [372.633215] ? lock_is_held_type+0xe4/0x140 [372.639404] btrfs_work_helper+0x1ae/0xa90 [btrfs] [372.646268] process_one_work+0x7e9/0x1320 [372.652321] ? lock_release+0x6d0/0x6d0 [372.658081] ? pwq_dec_nr_in_flight+0x230/0x230 [372.664513] ? rwlock_bug.part.0+0x90/0x90 [372.670529] worker_thread+0x59e/0xf90 [372.676172] ? process_one_work+0x1320/0x1320 [372.682440] kthread+0x3b9/0x490 [372.687550] ? _raw_spin_unlock_irq+0x24/0x50 [372.693811] ? set_kthread_struct+0x100/0x100 [372.700052] ret_from_fork+0x22/0x30 [372.705517] </TASK> [372.709747] INFO: task btrfs-transacti:2347 blocked for more than 123 seconds. [372.729827] Not tainted 5.16.0-rc8 #7 [372.745907] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. [372.767106] task:btrfs-transacti state:D stack: 0 pid: 2347 ppid: 2 flags:0x00004000 [372.787776] Call Trace: [372.801652] <TASK> [372.812961] __schedule+0xb56/0x4850 [372.830011] ? io_schedule_timeout+0x190/0x190 [372.852547] ? lockdep_hardirqs_on+0x7e/0x100 [372.871761] ? _raw_spin_unlock_irqrestore+0x3e/0x60 [372.886792] schedule+0xe0/0x270 [372.901685] wait_current_trans+0x22c/0x310 [btrfs] [372.919743] ? btrfs_put_transaction+0x3d0/0x3d0 [btrfs] [372.938923] ? finish_wait+0x270/0x270 [372.959085] ? join_transaction+0xc7 ---truncated---

Published: June 20, 2024; 8:15:11 AM -0400
V4.0:(not available)
V3.1: 5.5 MEDIUM
V2.0:(not available)
CVE-2022-48733

In the Linux kernel, the following vulnerability has been resolved: btrfs: fix use-after-free after failure to create a snapshot At ioctl.c:create_snapshot(), we allocate a pending snapshot structure and then attach it to the transaction's list of pending snapshots. After that we call btrfs_commit_transaction(), and if that returns an error we jump to 'fail' label, where we kfree() the pending snapshot structure. This can result in a later use-after-free of the pending snapshot: 1) We allocated the pending snapshot and added it to the transaction's list of pending snapshots; 2) We call btrfs_commit_transaction(), and it fails either at the first call to btrfs_run_delayed_refs() or btrfs_start_dirty_block_groups(). In both cases, we don't abort the transaction and we release our transaction handle. We jump to the 'fail' label and free the pending snapshot structure. We return with the pending snapshot still in the transaction's list; 3) Another task commits the transaction. This time there's no error at all, and then during the transaction commit it accesses a pointer to the pending snapshot structure that the snapshot creation task has already freed, resulting in a user-after-free. This issue could actually be detected by smatch, which produced the following warning: fs/btrfs/ioctl.c:843 create_snapshot() warn: '&pending_snapshot->list' not removed from list So fix this by not having the snapshot creation ioctl directly add the pending snapshot to the transaction's list. Instead add the pending snapshot to the transaction handle, and then at btrfs_commit_transaction() we add the snapshot to the list only when we can guarantee that any error returned after that point will result in a transaction abort, in which case the ioctl code can safely free the pending snapshot and no one can access it anymore.

Published: June 20, 2024; 8:15:11 AM -0400
V4.0:(not available)
V3.1: 7.8 HIGH
V2.0:(not available)
CVE-2021-47612

In the Linux kernel, the following vulnerability has been resolved: nfc: fix segfault in nfc_genl_dump_devices_done When kmalloc in nfc_genl_dump_devices() fails then nfc_genl_dump_devices_done() segfaults as below KASAN: null-ptr-deref in range [0x0000000000000008-0x000000000000000f] CPU: 0 PID: 25 Comm: kworker/0:1 Not tainted 5.16.0-rc4-01180-g2a987e65025e-dirty #5 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.14.0-6.fc35 04/01/2014 Workqueue: events netlink_sock_destruct_work RIP: 0010:klist_iter_exit+0x26/0x80 Call Trace: <TASK> class_dev_iter_exit+0x15/0x20 nfc_genl_dump_devices_done+0x3b/0x50 genl_lock_done+0x84/0xd0 netlink_sock_destruct+0x8f/0x270 __sk_destruct+0x64/0x3b0 sk_destruct+0xa8/0xd0 __sk_free+0x2e8/0x3d0 sk_free+0x51/0x90 netlink_sock_destruct_work+0x1c/0x20 process_one_work+0x411/0x710 worker_thread+0x6fd/0xa80

Published: June 19, 2024; 11:15:55 AM -0400
V4.0:(not available)
V3.1: 5.5 MEDIUM
V2.0:(not available)
CVE-2021-47610

In the Linux kernel, the following vulnerability has been resolved: drm/msm: Fix null ptr access msm_ioctl_gem_submit() Fix the below null pointer dereference in msm_ioctl_gem_submit(): 26545.260705: Call trace: 26545.263223: kref_put+0x1c/0x60 26545.266452: msm_ioctl_gem_submit+0x254/0x744 26545.270937: drm_ioctl_kernel+0xa8/0x124 26545.274976: drm_ioctl+0x21c/0x33c 26545.278478: drm_compat_ioctl+0xdc/0xf0 26545.282428: __arm64_compat_sys_ioctl+0xc8/0x100 26545.287169: el0_svc_common+0xf8/0x250 26545.291025: do_el0_svc_compat+0x28/0x54 26545.295066: el0_svc_compat+0x10/0x1c 26545.298838: el0_sync_compat_handler+0xa8/0xcc 26545.303403: el0_sync_compat+0x188/0x1c0 26545.307445: Code: d503201f d503201f 52800028 4b0803e8 (b8680008) 26545.318799: Kernel panic - not syncing: Oops: Fatal exception

Published: June 19, 2024; 11:15:55 AM -0400
V4.0:(not available)
V3.1: 5.5 MEDIUM
V2.0:(not available)
CVE-2021-47600

In the Linux kernel, the following vulnerability has been resolved: dm btree remove: fix use after free in rebalance_children() Move dm_tm_unlock() after dm_tm_dec().

Published: June 19, 2024; 11:15:54 AM -0400
V4.0:(not available)
V3.1: 7.8 HIGH
V2.0:(not available)
CVE-2021-47589

In the Linux kernel, the following vulnerability has been resolved: igbvf: fix double free in `igbvf_probe` In `igbvf_probe`, if register_netdev() fails, the program will go to label err_hw_init, and then to label err_ioremap. In free_netdev() which is just below label err_ioremap, there is `list_for_each_entry_safe` and `netif_napi_del` which aims to delete all entries in `dev->napi_list`. The program has added an entry `adapter->rx_ring->napi` which is added by `netif_napi_add` in igbvf_alloc_queues(). However, adapter->rx_ring has been freed below label err_hw_init. So this a UAF. In terms of how to patch the problem, we can refer to igbvf_remove() and delete the entry before `adapter->rx_ring`. The KASAN logs are as follows: [ 35.126075] BUG: KASAN: use-after-free in free_netdev+0x1fd/0x450 [ 35.127170] Read of size 8 at addr ffff88810126d990 by task modprobe/366 [ 35.128360] [ 35.128643] CPU: 1 PID: 366 Comm: modprobe Not tainted 5.15.0-rc2+ #14 [ 35.129789] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.12.0-59-gc9ba5276e321-prebuilt.qemu.org 04/01/2014 [ 35.131749] Call Trace: [ 35.132199] dump_stack_lvl+0x59/0x7b [ 35.132865] print_address_description+0x7c/0x3b0 [ 35.133707] ? free_netdev+0x1fd/0x450 [ 35.134378] __kasan_report+0x160/0x1c0 [ 35.135063] ? free_netdev+0x1fd/0x450 [ 35.135738] kasan_report+0x4b/0x70 [ 35.136367] free_netdev+0x1fd/0x450 [ 35.137006] igbvf_probe+0x121d/0x1a10 [igbvf] [ 35.137808] ? igbvf_vlan_rx_add_vid+0x100/0x100 [igbvf] [ 35.138751] local_pci_probe+0x13c/0x1f0 [ 35.139461] pci_device_probe+0x37e/0x6c0 [ 35.165526] [ 35.165806] Allocated by task 366: [ 35.166414] ____kasan_kmalloc+0xc4/0xf0 [ 35.167117] foo_kmem_cache_alloc_trace+0x3c/0x50 [igbvf] [ 35.168078] igbvf_probe+0x9c5/0x1a10 [igbvf] [ 35.168866] local_pci_probe+0x13c/0x1f0 [ 35.169565] pci_device_probe+0x37e/0x6c0 [ 35.179713] [ 35.179993] Freed by task 366: [ 35.180539] kasan_set_track+0x4c/0x80 [ 35.181211] kasan_set_free_info+0x1f/0x40 [ 35.181942] ____kasan_slab_free+0x103/0x140 [ 35.182703] kfree+0xe3/0x250 [ 35.183239] igbvf_probe+0x1173/0x1a10 [igbvf] [ 35.184040] local_pci_probe+0x13c/0x1f0

Published: June 19, 2024; 11:15:53 AM -0400
V4.0:(not available)
V3.1: 7.8 HIGH
V2.0:(not available)
CVE-2021-47578

In the Linux kernel, the following vulnerability has been resolved: scsi: scsi_debug: Don't call kcalloc() if size arg is zero If the size arg to kcalloc() is zero, it returns ZERO_SIZE_PTR. Because of that, for a following NULL pointer check to work on the returned pointer, kcalloc() must not be called with the size arg equal to zero. Return early without error before the kcalloc() call if size arg is zero. BUG: KASAN: null-ptr-deref in memcpy include/linux/fortify-string.h:191 [inline] BUG: KASAN: null-ptr-deref in sg_copy_buffer+0x138/0x240 lib/scatterlist.c:974 Write of size 4 at addr 0000000000000010 by task syz-executor.1/22789 CPU: 1 PID: 22789 Comm: syz-executor.1 Not tainted 5.15.0-syzk #1 Hardware name: Red Hat KVM, BIOS 1.13.0-2 Call Trace: __dump_stack lib/dump_stack.c:88 [inline] dump_stack_lvl+0x89/0xb5 lib/dump_stack.c:106 __kasan_report mm/kasan/report.c:446 [inline] kasan_report.cold.14+0x112/0x117 mm/kasan/report.c:459 check_region_inline mm/kasan/generic.c:183 [inline] kasan_check_range+0x1a3/0x210 mm/kasan/generic.c:189 memcpy+0x3b/0x60 mm/kasan/shadow.c:66 memcpy include/linux/fortify-string.h:191 [inline] sg_copy_buffer+0x138/0x240 lib/scatterlist.c:974 do_dout_fetch drivers/scsi/scsi_debug.c:2954 [inline] do_dout_fetch drivers/scsi/scsi_debug.c:2946 [inline] resp_verify+0x49e/0x930 drivers/scsi/scsi_debug.c:4276 schedule_resp+0x4d8/0x1a70 drivers/scsi/scsi_debug.c:5478 scsi_debug_queuecommand+0x8c9/0x1ec0 drivers/scsi/scsi_debug.c:7533 scsi_dispatch_cmd drivers/scsi/scsi_lib.c:1520 [inline] scsi_queue_rq+0x16b0/0x2d40 drivers/scsi/scsi_lib.c:1699 blk_mq_dispatch_rq_list+0xb9b/0x2700 block/blk-mq.c:1639 __blk_mq_sched_dispatch_requests+0x28f/0x590 block/blk-mq-sched.c:325 blk_mq_sched_dispatch_requests+0x105/0x190 block/blk-mq-sched.c:358 __blk_mq_run_hw_queue+0xe5/0x150 block/blk-mq.c:1761 __blk_mq_delay_run_hw_queue+0x4f8/0x5c0 block/blk-mq.c:1838 blk_mq_run_hw_queue+0x18d/0x350 block/blk-mq.c:1891 blk_mq_sched_insert_request+0x3db/0x4e0 block/blk-mq-sched.c:474 blk_execute_rq_nowait+0x16b/0x1c0 block/blk-exec.c:62 blk_execute_rq+0xdb/0x360 block/blk-exec.c:102 sg_scsi_ioctl drivers/scsi/scsi_ioctl.c:621 [inline] scsi_ioctl+0x8bb/0x15c0 drivers/scsi/scsi_ioctl.c:930 sg_ioctl_common+0x172d/0x2710 drivers/scsi/sg.c:1112 sg_ioctl+0xa2/0x180 drivers/scsi/sg.c:1165 vfs_ioctl fs/ioctl.c:51 [inline] __do_sys_ioctl fs/ioctl.c:874 [inline] __se_sys_ioctl fs/ioctl.c:860 [inline] __x64_sys_ioctl+0x19d/0x220 fs/ioctl.c:860 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x3a/0x80 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x44/0xae

Published: June 19, 2024; 11:15:52 AM -0400
V4.0:(not available)
V3.1: 5.5 MEDIUM
V2.0:(not available)
CVE-2021-47576

In the Linux kernel, the following vulnerability has been resolved: scsi: scsi_debug: Sanity check block descriptor length in resp_mode_select() In resp_mode_select() sanity check the block descriptor len to avoid UAF. BUG: KASAN: use-after-free in resp_mode_select+0xa4c/0xb40 drivers/scsi/scsi_debug.c:2509 Read of size 1 at addr ffff888026670f50 by task scsicmd/15032 CPU: 1 PID: 15032 Comm: scsicmd Not tainted 5.15.0-01d0625 #15 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Call Trace: <TASK> dump_stack_lvl+0x89/0xb5 lib/dump_stack.c:107 print_address_description.constprop.9+0x28/0x160 mm/kasan/report.c:257 kasan_report.cold.14+0x7d/0x117 mm/kasan/report.c:443 __asan_report_load1_noabort+0x14/0x20 mm/kasan/report_generic.c:306 resp_mode_select+0xa4c/0xb40 drivers/scsi/scsi_debug.c:2509 schedule_resp+0x4af/0x1a10 drivers/scsi/scsi_debug.c:5483 scsi_debug_queuecommand+0x8c9/0x1e70 drivers/scsi/scsi_debug.c:7537 scsi_queue_rq+0x16b4/0x2d10 drivers/scsi/scsi_lib.c:1521 blk_mq_dispatch_rq_list+0xb9b/0x2700 block/blk-mq.c:1640 __blk_mq_sched_dispatch_requests+0x28f/0x590 block/blk-mq-sched.c:325 blk_mq_sched_dispatch_requests+0x105/0x190 block/blk-mq-sched.c:358 __blk_mq_run_hw_queue+0xe5/0x150 block/blk-mq.c:1762 __blk_mq_delay_run_hw_queue+0x4f8/0x5c0 block/blk-mq.c:1839 blk_mq_run_hw_queue+0x18d/0x350 block/blk-mq.c:1891 blk_mq_sched_insert_request+0x3db/0x4e0 block/blk-mq-sched.c:474 blk_execute_rq_nowait+0x16b/0x1c0 block/blk-exec.c:63 sg_common_write.isra.18+0xeb3/0x2000 drivers/scsi/sg.c:837 sg_new_write.isra.19+0x570/0x8c0 drivers/scsi/sg.c:775 sg_ioctl_common+0x14d6/0x2710 drivers/scsi/sg.c:941 sg_ioctl+0xa2/0x180 drivers/scsi/sg.c:1166 __x64_sys_ioctl+0x19d/0x220 fs/ioctl.c:52 do_syscall_64+0x3a/0x80 arch/x86/entry/common.c:50 entry_SYSCALL_64_after_hwframe+0x44/0xae arch/x86/entry/entry_64.S:113

Published: June 19, 2024; 11:15:52 AM -0400
V4.0:(not available)
V3.1: 7.8 HIGH
V2.0:(not available)
CVE-2024-38600

In the Linux kernel, the following vulnerability has been resolved: ALSA: Fix deadlocks with kctl removals at disconnection In snd_card_disconnect(), we set card->shutdown flag at the beginning, call callbacks and do sync for card->power_ref_sleep waiters at the end. The callback may delete a kctl element, and this can lead to a deadlock when the device was in the suspended state. Namely: * A process waits for the power up at snd_power_ref_and_wait() in snd_ctl_info() or read/write() inside card->controls_rwsem. * The system gets disconnected meanwhile, and the driver tries to delete a kctl via snd_ctl_remove*(); it tries to take card->controls_rwsem again, but this is already locked by the above. Since the sleeper isn't woken up, this deadlocks. An easy fix is to wake up sleepers before processing the driver disconnect callbacks but right after setting the card->shutdown flag. Then all sleepers will abort immediately, and the code flows again. So, basically this patch moves the wait_event() call at the right timing. While we're at it, just to be sure, call wait_event_all() instead of wait_event(), although we don't use exclusive events on this queue for now.

Published: June 19, 2024; 10:15:19 AM -0400
V4.0:(not available)
V3.1: 5.5 MEDIUM
V2.0:(not available)
CVE-2024-38597

In the Linux kernel, the following vulnerability has been resolved: eth: sungem: remove .ndo_poll_controller to avoid deadlocks Erhard reports netpoll warnings from sungem: netpoll_send_skb_on_dev(): eth0 enabled interrupts in poll (gem_start_xmit+0x0/0x398) WARNING: CPU: 1 PID: 1 at net/core/netpoll.c:370 netpoll_send_skb+0x1fc/0x20c gem_poll_controller() disables interrupts, which may sleep. We can't sleep in netpoll, it has interrupts disabled completely. Strangely, gem_poll_controller() doesn't even poll the completions, and instead acts as if an interrupt has fired so it just schedules NAPI and exits. None of this has been necessary for years, since netpoll invokes NAPI directly.

Published: June 19, 2024; 10:15:19 AM -0400
V4.0:(not available)
V3.1: 5.5 MEDIUM
V2.0:(not available)
CVE-2024-38583

In the Linux kernel, the following vulnerability has been resolved: nilfs2: fix use-after-free of timer for log writer thread Patch series "nilfs2: fix log writer related issues". This bug fix series covers three nilfs2 log writer-related issues, including a timer use-after-free issue and potential deadlock issue on unmount, and a potential freeze issue in event synchronization found during their analysis. Details are described in each commit log. This patch (of 3): A use-after-free issue has been reported regarding the timer sc_timer on the nilfs_sc_info structure. The problem is that even though it is used to wake up a sleeping log writer thread, sc_timer is not shut down until the nilfs_sc_info structure is about to be freed, and is used regardless of the thread's lifetime. Fix this issue by limiting the use of sc_timer only while the log writer thread is alive.

Published: June 19, 2024; 10:15:18 AM -0400
V4.0:(not available)
V3.1: 7.8 HIGH
V2.0:(not available)
CVE-2024-38581

In the Linux kernel, the following vulnerability has been resolved: drm/amdgpu/mes: fix use-after-free issue Delete fence fallback timer to fix the ramdom use-after-free issue. v2: move to amdgpu_mes.c

Published: June 19, 2024; 10:15:18 AM -0400
V4.0:(not available)
V3.1: 7.8 HIGH
V2.0:(not available)