U.S. flag   An official website of the United States government
Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Https

Secure .gov websites use HTTPS
A lock (Dot gov) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Results (Refine Search)

Search Parameters:
  • Keyword (text search): cpe:2.3:o:linux:linux_kernel:3.2.22:*:*:*:*:*:*:*
  • CPE Name Search: true
There are 2,540 matching records.
Displaying matches 361 through 380.
Vuln ID Summary CVSS Severity
CVE-2022-48791

In the Linux kernel, the following vulnerability has been resolved: scsi: pm8001: Fix use-after-free for aborted TMF sas_task Currently a use-after-free may occur if a TMF sas_task is aborted before we handle the IO completion in mpi_ssp_completion(). The abort occurs due to timeout. When the timeout occurs, the SAS_TASK_STATE_ABORTED flag is set and the sas_task is freed in pm8001_exec_internal_tmf_task(). However, if the I/O completion occurs later, the I/O completion still thinks that the sas_task is available. Fix this by clearing the ccb->task if the TMF times out - the I/O completion handler does nothing if this pointer is cleared.

Published: July 16, 2024; 8:15:03 AM -0400
V4.0:(not available)
V3.1: 7.8 HIGH
V2.0:(not available)
CVE-2022-48790

In the Linux kernel, the following vulnerability has been resolved: nvme: fix a possible use-after-free in controller reset during load Unlike .queue_rq, in .submit_async_event drivers may not check the ctrl readiness for AER submission. This may lead to a use-after-free condition that was observed with nvme-tcp. The race condition may happen in the following scenario: 1. driver executes its reset_ctrl_work 2. -> nvme_stop_ctrl - flushes ctrl async_event_work 3. ctrl sends AEN which is received by the host, which in turn schedules AEN handling 4. teardown admin queue (which releases the queue socket) 5. AEN processed, submits another AER, calling the driver to submit 6. driver attempts to send the cmd ==> use-after-free In order to fix that, add ctrl state check to validate the ctrl is actually able to accept the AER submission. This addresses the above race in controller resets because the driver during teardown should: 1. change ctrl state to RESETTING 2. flush async_event_work (as well as other async work elements) So after 1,2, any other AER command will find the ctrl state to be RESETTING and bail out without submitting the AER.

Published: July 16, 2024; 8:15:03 AM -0400
V4.0:(not available)
V3.1: 7.0 HIGH
V2.0:(not available)
CVE-2022-48789

In the Linux kernel, the following vulnerability has been resolved: nvme-tcp: fix possible use-after-free in transport error_recovery work While nvme_tcp_submit_async_event_work is checking the ctrl and queue state before preparing the AER command and scheduling io_work, in order to fully prevent a race where this check is not reliable the error recovery work must flush async_event_work before continuing to destroy the admin queue after setting the ctrl state to RESETTING such that there is no race .submit_async_event and the error recovery handler itself changing the ctrl state.

Published: July 16, 2024; 8:15:03 AM -0400
V4.0:(not available)
V3.1: 7.8 HIGH
V2.0:(not available)
CVE-2022-48788

In the Linux kernel, the following vulnerability has been resolved: nvme-rdma: fix possible use-after-free in transport error_recovery work While nvme_rdma_submit_async_event_work is checking the ctrl and queue state before preparing the AER command and scheduling io_work, in order to fully prevent a race where this check is not reliable the error recovery work must flush async_event_work before continuing to destroy the admin queue after setting the ctrl state to RESETTING such that there is no race .submit_async_event and the error recovery handler itself changing the ctrl state.

Published: July 16, 2024; 8:15:03 AM -0400
V4.0:(not available)
V3.1: 7.8 HIGH
V2.0:(not available)
CVE-2022-48773

In the Linux kernel, the following vulnerability has been resolved: xprtrdma: fix pointer derefs in error cases of rpcrdma_ep_create If there are failures then we must not leave the non-NULL pointers with the error value, otherwise `rpcrdma_ep_destroy` gets confused and tries free them, resulting in an Oops.

Published: July 16, 2024; 8:15:02 AM -0400
V4.0:(not available)
V3.1: 5.5 MEDIUM
V2.0:(not available)
CVE-2021-47624

In the Linux kernel, the following vulnerability has been resolved: net/sunrpc: fix reference count leaks in rpc_sysfs_xprt_state_change The refcount leak issues take place in an error handling path. When the 3rd argument buf doesn't match with "offline", "online" or "remove", the function simply returns -EINVAL and forgets to decrease the reference count of a rpc_xprt object and a rpc_xprt_switch object increased by rpc_sysfs_xprt_kobj_get_xprt() and rpc_sysfs_xprt_kobj_get_xprt_switch(), causing reference count leaks of both unused objects. Fix this issue by jumping to the error handling path labelled with out_put when buf matches none of "offline", "online" or "remove".

Published: July 16, 2024; 8:15:02 AM -0400
V4.0:(not available)
V3.1: 7.1 HIGH
V2.0:(not available)
CVE-2021-47622

In the Linux kernel, the following vulnerability has been resolved: scsi: ufs: Fix a deadlock in the error handler The following deadlock has been observed on a test setup: - All tags allocated - The SCSI error handler calls ufshcd_eh_host_reset_handler() - ufshcd_eh_host_reset_handler() queues work that calls ufshcd_err_handler() - ufshcd_err_handler() locks up as follows: Workqueue: ufs_eh_wq_0 ufshcd_err_handler.cfi_jt Call trace: __switch_to+0x298/0x5d8 __schedule+0x6cc/0xa94 schedule+0x12c/0x298 blk_mq_get_tag+0x210/0x480 __blk_mq_alloc_request+0x1c8/0x284 blk_get_request+0x74/0x134 ufshcd_exec_dev_cmd+0x68/0x640 ufshcd_verify_dev_init+0x68/0x35c ufshcd_probe_hba+0x12c/0x1cb8 ufshcd_host_reset_and_restore+0x88/0x254 ufshcd_reset_and_restore+0xd0/0x354 ufshcd_err_handler+0x408/0xc58 process_one_work+0x24c/0x66c worker_thread+0x3e8/0xa4c kthread+0x150/0x1b4 ret_from_fork+0x10/0x30 Fix this lockup by making ufshcd_exec_dev_cmd() allocate a reserved request.

Published: July 16, 2024; 8:15:02 AM -0400
V4.0:(not available)
V3.1: 5.5 MEDIUM
V2.0:(not available)
CVE-2024-41002

In the Linux kernel, the following vulnerability has been resolved: crypto: hisilicon/sec - Fix memory leak for sec resource release The AIV is one of the SEC resources. When releasing resources, it need to release the AIV resources at the same time. Otherwise, memory leakage occurs. The aiv resource release is added to the sec resource release function.

Published: July 12, 2024; 9:15:21 AM -0400
V4.0:(not available)
V3.1: 5.5 MEDIUM
V2.0:(not available)
CVE-2024-41001

In the Linux kernel, the following vulnerability has been resolved: io_uring/sqpoll: work around a potential audit memory leak kmemleak complains that there's a memory leak related to connect handling: unreferenced object 0xffff0001093bdf00 (size 128): comm "iou-sqp-455", pid 457, jiffies 4294894164 hex dump (first 32 bytes): 02 00 fa ea 7f 00 00 01 00 00 00 00 00 00 00 00 ................ 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ backtrace (crc 2e481b1a): [<00000000c0a26af4>] kmemleak_alloc+0x30/0x38 [<000000009c30bb45>] kmalloc_trace+0x228/0x358 [<000000009da9d39f>] __audit_sockaddr+0xd0/0x138 [<0000000089a93e34>] move_addr_to_kernel+0x1a0/0x1f8 [<000000000b4e80e6>] io_connect_prep+0x1ec/0x2d4 [<00000000abfbcd99>] io_submit_sqes+0x588/0x1e48 [<00000000e7c25e07>] io_sq_thread+0x8a4/0x10e4 [<00000000d999b491>] ret_from_fork+0x10/0x20 which can can happen if: 1) The command type does something on the prep side that triggers an audit call. 2) The thread hasn't done any operations before this that triggered an audit call inside ->issue(), where we have audit_uring_entry() and audit_uring_exit(). Work around this by issuing a blanket NOP operation before the SQPOLL does anything.

Published: July 12, 2024; 9:15:21 AM -0400
V4.0:(not available)
V3.1: 5.5 MEDIUM
V2.0:(not available)
CVE-2024-41000

In the Linux kernel, the following vulnerability has been resolved: block/ioctl: prefer different overflow check Running syzkaller with the newly reintroduced signed integer overflow sanitizer shows this report: [ 62.982337] ------------[ cut here ]------------ [ 62.985692] cgroup: Invalid name [ 62.986211] UBSAN: signed-integer-overflow in ../block/ioctl.c:36:46 [ 62.989370] 9pnet_fd: p9_fd_create_tcp (7343): problem connecting socket to 127.0.0.1 [ 62.992992] 9223372036854775807 + 4095 cannot be represented in type 'long long' [ 62.997827] 9pnet_fd: p9_fd_create_tcp (7345): problem connecting socket to 127.0.0.1 [ 62.999369] random: crng reseeded on system resumption [ 63.000634] GUP no longer grows the stack in syz-executor.2 (7353): 20002000-20003000 (20001000) [ 63.000668] CPU: 0 PID: 7353 Comm: syz-executor.2 Not tainted 6.8.0-rc2-00035-gb3ef86b5a957 #1 [ 63.000677] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.3-debian-1.16.3-2 04/01/2014 [ 63.000682] Call Trace: [ 63.000686] <TASK> [ 63.000731] dump_stack_lvl+0x93/0xd0 [ 63.000919] __get_user_pages+0x903/0xd30 [ 63.001030] __gup_longterm_locked+0x153e/0x1ba0 [ 63.001041] ? _raw_read_unlock_irqrestore+0x17/0x50 [ 63.001072] ? try_get_folio+0x29c/0x2d0 [ 63.001083] internal_get_user_pages_fast+0x1119/0x1530 [ 63.001109] iov_iter_extract_pages+0x23b/0x580 [ 63.001206] bio_iov_iter_get_pages+0x4de/0x1220 [ 63.001235] iomap_dio_bio_iter+0x9b6/0x1410 [ 63.001297] __iomap_dio_rw+0xab4/0x1810 [ 63.001316] iomap_dio_rw+0x45/0xa0 [ 63.001328] ext4_file_write_iter+0xdde/0x1390 [ 63.001372] vfs_write+0x599/0xbd0 [ 63.001394] ksys_write+0xc8/0x190 [ 63.001403] do_syscall_64+0xd4/0x1b0 [ 63.001421] ? arch_exit_to_user_mode_prepare+0x3a/0x60 [ 63.001479] entry_SYSCALL_64_after_hwframe+0x6f/0x77 [ 63.001535] RIP: 0033:0x7f7fd3ebf539 [ 63.001551] Code: 28 00 00 00 75 05 48 83 c4 28 c3 e8 f1 14 00 00 90 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 c7 c1 b8 ff ff ff f7 d8 64 89 01 48 [ 63.001562] RSP: 002b:00007f7fd32570c8 EFLAGS: 00000246 ORIG_RAX: 0000000000000001 [ 63.001584] RAX: ffffffffffffffda RBX: 00007f7fd3ff3f80 RCX: 00007f7fd3ebf539 [ 63.001590] RDX: 4db6d1e4f7e43360 RSI: 0000000020000000 RDI: 0000000000000004 [ 63.001595] RBP: 00007f7fd3f1e496 R08: 0000000000000000 R09: 0000000000000000 [ 63.001599] R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000000 [ 63.001604] R13: 0000000000000006 R14: 00007f7fd3ff3f80 R15: 00007ffd415ad2b8 ... [ 63.018142] ---[ end trace ]--- Historically, the signed integer overflow sanitizer did not work in the kernel due to its interaction with `-fwrapv` but this has since been changed [1] in the newest version of Clang; It was re-enabled in the kernel with Commit 557f8c582a9ba8ab ("ubsan: Reintroduce signed overflow sanitizer"). Let's rework this overflow checking logic to not actually perform an overflow during the check itself, thus avoiding the UBSAN splat. [1]: https://github.com/llvm/llvm-project/pull/82432

Published: July 12, 2024; 9:15:20 AM -0400
V4.0:(not available)
V3.1: 7.8 HIGH
V2.0:(not available)
CVE-2024-40997

In the Linux kernel, the following vulnerability has been resolved: cpufreq: amd-pstate: fix memory leak on CPU EPP exit The cpudata memory from kzalloc() in amd_pstate_epp_cpu_init() is not freed in the analogous exit function, so fix that. [ rjw: Subject and changelog edits ]

Published: July 12, 2024; 9:15:20 AM -0400
V4.0:(not available)
V3.1: 5.5 MEDIUM
V2.0:(not available)
CVE-2024-40982

In the Linux kernel, the following vulnerability has been resolved: ssb: Fix potential NULL pointer dereference in ssb_device_uevent() The ssb_device_uevent() function first attempts to convert the 'dev' pointer to 'struct ssb_device *'. However, it mistakenly dereferences 'dev' before performing the NULL check, potentially leading to a NULL pointer dereference if 'dev' is NULL. To fix this issue, move the NULL check before dereferencing the 'dev' pointer, ensuring that the pointer is valid before attempting to use it. Found by Linux Verification Center (linuxtesting.org) with SVACE.

Published: July 12, 2024; 9:15:19 AM -0400
V4.0:(not available)
V3.1: 5.5 MEDIUM
V2.0:(not available)
CVE-2024-40981

In the Linux kernel, the following vulnerability has been resolved: batman-adv: bypass empty buckets in batadv_purge_orig_ref() Many syzbot reports are pointing to soft lockups in batadv_purge_orig_ref() [1] Root cause is unknown, but we can avoid spending too much time there and perhaps get more interesting reports. [1] watchdog: BUG: soft lockup - CPU#0 stuck for 27s! [kworker/u4:6:621] Modules linked in: irq event stamp: 6182794 hardirqs last enabled at (6182793): [<ffff8000801dae10>] __local_bh_enable_ip+0x224/0x44c kernel/softirq.c:386 hardirqs last disabled at (6182794): [<ffff80008ad66a78>] __el1_irq arch/arm64/kernel/entry-common.c:533 [inline] hardirqs last disabled at (6182794): [<ffff80008ad66a78>] el1_interrupt+0x24/0x68 arch/arm64/kernel/entry-common.c:551 softirqs last enabled at (6182792): [<ffff80008aab71c4>] spin_unlock_bh include/linux/spinlock.h:396 [inline] softirqs last enabled at (6182792): [<ffff80008aab71c4>] batadv_purge_orig_ref+0x114c/0x1228 net/batman-adv/originator.c:1287 softirqs last disabled at (6182790): [<ffff80008aab61dc>] spin_lock_bh include/linux/spinlock.h:356 [inline] softirqs last disabled at (6182790): [<ffff80008aab61dc>] batadv_purge_orig_ref+0x164/0x1228 net/batman-adv/originator.c:1271 CPU: 0 PID: 621 Comm: kworker/u4:6 Not tainted 6.8.0-rc7-syzkaller-g707081b61156 #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 02/29/2024 Workqueue: bat_events batadv_purge_orig pstate: 80400005 (Nzcv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--) pc : should_resched arch/arm64/include/asm/preempt.h:79 [inline] pc : __local_bh_enable_ip+0x228/0x44c kernel/softirq.c:388 lr : __local_bh_enable_ip+0x224/0x44c kernel/softirq.c:386 sp : ffff800099007970 x29: ffff800099007980 x28: 1fffe00018fce1bd x27: dfff800000000000 x26: ffff0000d2620008 x25: ffff0000c7e70de8 x24: 0000000000000001 x23: 1fffe00018e57781 x22: dfff800000000000 x21: ffff80008aab71c4 x20: ffff0001b40136c0 x19: ffff0000c72bbc08 x18: 1fffe0001a817bb0 x17: ffff800125414000 x16: ffff80008032116c x15: 0000000000000001 x14: 1fffe0001ee9d610 x13: 0000000000000000 x12: 0000000000000003 x11: 0000000000000000 x10: 0000000000ff0100 x9 : 0000000000000000 x8 : 00000000005e5789 x7 : ffff80008aab61dc x6 : 0000000000000000 x5 : 0000000000000000 x4 : 0000000000000001 x3 : 0000000000000000 x2 : 0000000000000006 x1 : 0000000000000080 x0 : ffff800125414000 Call trace: __daif_local_irq_enable arch/arm64/include/asm/irqflags.h:27 [inline] arch_local_irq_enable arch/arm64/include/asm/irqflags.h:49 [inline] __local_bh_enable_ip+0x228/0x44c kernel/softirq.c:386 __raw_spin_unlock_bh include/linux/spinlock_api_smp.h:167 [inline] _raw_spin_unlock_bh+0x3c/0x4c kernel/locking/spinlock.c:210 spin_unlock_bh include/linux/spinlock.h:396 [inline] batadv_purge_orig_ref+0x114c/0x1228 net/batman-adv/originator.c:1287 batadv_purge_orig+0x20/0x70 net/batman-adv/originator.c:1300 process_one_work+0x694/0x1204 kernel/workqueue.c:2633 process_scheduled_works kernel/workqueue.c:2706 [inline] worker_thread+0x938/0xef4 kernel/workqueue.c:2787 kthread+0x288/0x310 kernel/kthread.c:388 ret_from_fork+0x10/0x20 arch/arm64/kernel/entry.S:860 Sending NMI from CPU 0 to CPUs 1: NMI backtrace for cpu 1 CPU: 1 PID: 0 Comm: swapper/1 Not tainted 6.8.0-rc7-syzkaller-g707081b61156 #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 02/29/2024 pstate: 80400005 (Nzcv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--) pc : arch_local_irq_enable+0x8/0xc arch/arm64/include/asm/irqflags.h:51 lr : default_idle_call+0xf8/0x128 kernel/sched/idle.c:103 sp : ffff800093a17d30 x29: ffff800093a17d30 x28: dfff800000000000 x27: 1ffff00012742fb4 x26: ffff80008ec9d000 x25: 0000000000000000 x24: 0000000000000002 x23: 1ffff00011d93a74 x22: ffff80008ec9d3a0 x21: 0000000000000000 x20: ffff0000c19dbc00 x19: ffff8000802d0fd8 x18: 1fffe00036804396 x17: ffff80008ec9d000 x16: ffff8000802d089c x15: 0000000000000001 ---truncated---

Published: July 12, 2024; 9:15:19 AM -0400
V4.0:(not available)
V3.1: 5.5 MEDIUM
V2.0:(not available)
CVE-2024-40980

In the Linux kernel, the following vulnerability has been resolved: drop_monitor: replace spin_lock by raw_spin_lock trace_drop_common() is called with preemption disabled, and it acquires a spin_lock. This is problematic for RT kernels because spin_locks are sleeping locks in this configuration, which causes the following splat: BUG: sleeping function called from invalid context at kernel/locking/spinlock_rt.c:48 in_atomic(): 1, irqs_disabled(): 1, non_block: 0, pid: 449, name: rcuc/47 preempt_count: 1, expected: 0 RCU nest depth: 2, expected: 2 5 locks held by rcuc/47/449: #0: ff1100086ec30a60 ((softirq_ctrl.lock)){+.+.}-{2:2}, at: __local_bh_disable_ip+0x105/0x210 #1: ffffffffb394a280 (rcu_read_lock){....}-{1:2}, at: rt_spin_lock+0xbf/0x130 #2: ffffffffb394a280 (rcu_read_lock){....}-{1:2}, at: __local_bh_disable_ip+0x11c/0x210 #3: ffffffffb394a160 (rcu_callback){....}-{0:0}, at: rcu_do_batch+0x360/0xc70 #4: ff1100086ee07520 (&data->lock){+.+.}-{2:2}, at: trace_drop_common.constprop.0+0xb5/0x290 irq event stamp: 139909 hardirqs last enabled at (139908): [<ffffffffb1df2b33>] _raw_spin_unlock_irqrestore+0x63/0x80 hardirqs last disabled at (139909): [<ffffffffb19bd03d>] trace_drop_common.constprop.0+0x26d/0x290 softirqs last enabled at (139892): [<ffffffffb07a1083>] __local_bh_enable_ip+0x103/0x170 softirqs last disabled at (139898): [<ffffffffb0909b33>] rcu_cpu_kthread+0x93/0x1f0 Preemption disabled at: [<ffffffffb1de786b>] rt_mutex_slowunlock+0xab/0x2e0 CPU: 47 PID: 449 Comm: rcuc/47 Not tainted 6.9.0-rc2-rt1+ #7 Hardware name: Dell Inc. PowerEdge R650/0Y2G81, BIOS 1.6.5 04/15/2022 Call Trace: <TASK> dump_stack_lvl+0x8c/0xd0 dump_stack+0x14/0x20 __might_resched+0x21e/0x2f0 rt_spin_lock+0x5e/0x130 ? trace_drop_common.constprop.0+0xb5/0x290 ? skb_queue_purge_reason.part.0+0x1bf/0x230 trace_drop_common.constprop.0+0xb5/0x290 ? preempt_count_sub+0x1c/0xd0 ? _raw_spin_unlock_irqrestore+0x4a/0x80 ? __pfx_trace_drop_common.constprop.0+0x10/0x10 ? rt_mutex_slowunlock+0x26a/0x2e0 ? skb_queue_purge_reason.part.0+0x1bf/0x230 ? __pfx_rt_mutex_slowunlock+0x10/0x10 ? skb_queue_purge_reason.part.0+0x1bf/0x230 trace_kfree_skb_hit+0x15/0x20 trace_kfree_skb+0xe9/0x150 kfree_skb_reason+0x7b/0x110 skb_queue_purge_reason.part.0+0x1bf/0x230 ? __pfx_skb_queue_purge_reason.part.0+0x10/0x10 ? mark_lock.part.0+0x8a/0x520 ... trace_drop_common() also disables interrupts, but this is a minor issue because we could easily replace it with a local_lock. Replace the spin_lock with raw_spin_lock to avoid sleeping in atomic context.

Published: July 12, 2024; 9:15:19 AM -0400
V4.0:(not available)
V3.1: 5.5 MEDIUM
V2.0:(not available)
CVE-2024-40977

In the Linux kernel, the following vulnerability has been resolved: wifi: mt76: mt7921s: fix potential hung tasks during chip recovery During chip recovery (e.g. chip reset), there is a possible situation that kernel worker reset_work is holding the lock and waiting for kernel thread stat_worker to be parked, while stat_worker is waiting for the release of the same lock. It causes a deadlock resulting in the dumping of hung tasks messages and possible rebooting of the device. This patch prevents the execution of stat_worker during the chip recovery.

Published: July 12, 2024; 9:15:19 AM -0400
V4.0:(not available)
V3.1: 5.5 MEDIUM
V2.0:(not available)
CVE-2024-40973

In the Linux kernel, the following vulnerability has been resolved: media: mtk-vcodec: potential null pointer deference in SCP The return value of devm_kzalloc() needs to be checked to avoid NULL pointer deference. This is similar to CVE-2022-3113.

Published: July 12, 2024; 9:15:18 AM -0400
V4.0:(not available)
V3.1: 5.5 MEDIUM
V2.0:(not available)
CVE-2024-40970

In the Linux kernel, the following vulnerability has been resolved: Avoid hw_desc array overrun in dw-axi-dmac I have a use case where nr_buffers = 3 and in which each descriptor is composed by 3 segments, resulting in the DMA channel descs_allocated to be 9. Since axi_desc_put() handles the hw_desc considering the descs_allocated, this scenario would result in a kernel panic (hw_desc array will be overrun). To fix this, the proposal is to add a new member to the axi_dma_desc structure, where we keep the number of allocated hw_descs (axi_desc_alloc()) and use it in axi_desc_put() to handle the hw_desc array correctly. Additionally I propose to remove the axi_chan_start_first_queued() call after completing the transfer, since it was identified that unbalance can occur (started descriptors can be interrupted and transfer ignored due to DMA channel not being enabled).

Published: July 12, 2024; 9:15:18 AM -0400
V4.0:(not available)
V3.1: 5.5 MEDIUM
V2.0:(not available)
CVE-2024-40969

In the Linux kernel, the following vulnerability has been resolved: f2fs: don't set RO when shutting down f2fs Shutdown does not check the error of thaw_super due to readonly, which causes a deadlock like below. f2fs_ioc_shutdown(F2FS_GOING_DOWN_FULLSYNC) issue_discard_thread - bdev_freeze - freeze_super - f2fs_stop_checkpoint() - f2fs_handle_critical_error - sb_start_write - set RO - waiting - bdev_thaw - thaw_super_locked - return -EINVAL, if sb_rdonly() - f2fs_stop_discard_thread -> wait for kthread_stop(discard_thread);

Published: July 12, 2024; 9:15:18 AM -0400
V4.0:(not available)
V3.1: 5.5 MEDIUM
V2.0:(not available)
CVE-2024-40967

In the Linux kernel, the following vulnerability has been resolved: serial: imx: Introduce timeout when waiting on transmitter empty By waiting at most 1 second for USR2_TXDC to be set, we avoid a potential deadlock. In case of the timeout, there is not much we can do, so we simply ignore the transmitter state and optimistically try to continue.

Published: July 12, 2024; 9:15:18 AM -0400
V4.0:(not available)
V3.1: 5.5 MEDIUM
V2.0:(not available)
CVE-2024-40965

In the Linux kernel, the following vulnerability has been resolved: i2c: lpi2c: Avoid calling clk_get_rate during transfer Instead of repeatedly calling clk_get_rate for each transfer, lock the clock rate and cache the value. A deadlock has been observed while adding tlv320aic32x4 audio codec to the system. When this clock provider adds its clock, the clk mutex is locked already, it needs to access i2c, which in return needs the mutex for clk_get_rate as well.

Published: July 12, 2024; 9:15:18 AM -0400
V4.0:(not available)
V3.1: 5.5 MEDIUM
V2.0:(not available)