Search Results (Refine Search)
- Keyword (text search): cpe:2.3:o:linux:linux_kernel:5.17:rc4:*:*:*:*:*:*
- CPE Name Search: true
Vuln ID | Summary | CVSS Severity |
---|---|---|
CVE-2024-56763 |
In the Linux kernel, the following vulnerability has been resolved: tracing: Prevent bad count for tracing_cpumask_write If a large count is provided, it will trigger a warning in bitmap_parse_user. Also check zero for it. Published: January 06, 2025; 12:15:42 PM -0500 |
V4.0:(not available) V3.1: 5.5 MEDIUM V2.0:(not available) |
CVE-2024-56759 |
In the Linux kernel, the following vulnerability has been resolved: btrfs: fix use-after-free when COWing tree bock and tracing is enabled When a COWing a tree block, at btrfs_cow_block(), and we have the tracepoint trace_btrfs_cow_block() enabled and preemption is also enabled (CONFIG_PREEMPT=y), we can trigger a use-after-free in the COWed extent buffer while inside the tracepoint code. This is because in some paths that call btrfs_cow_block(), such as btrfs_search_slot(), we are holding the last reference on the extent buffer @buf so btrfs_force_cow_block() drops the last reference on the @buf extent buffer when it calls free_extent_buffer_stale(buf), which schedules the release of the extent buffer with RCU. This means that if we are on a kernel with preemption, the current task may be preempted before calling trace_btrfs_cow_block() and the extent buffer already released by the time trace_btrfs_cow_block() is called, resulting in a use-after-free. Fix this by moving the trace_btrfs_cow_block() from btrfs_cow_block() to btrfs_force_cow_block() before the COWed extent buffer is freed. This also has a side effect of invoking the tracepoint in the tree defrag code, at defrag.c:btrfs_realloc_node(), since btrfs_force_cow_block() is called there, but this is fine and it was actually missing there. Published: January 06, 2025; 12:15:40 PM -0500 |
V4.0:(not available) V3.1: 7.8 HIGH V2.0:(not available) |
CVE-2024-56757 |
In the Linux kernel, the following vulnerability has been resolved: Bluetooth: btusb: mediatek: add intf release flow when usb disconnect MediaTek claim an special usb intr interface for ISO data transmission. The interface need to be released before unregistering hci device when usb disconnect. Removing BT usb dongle without properly releasing the interface may cause Kernel panic while unregister hci device. Published: January 06, 2025; 12:15:40 PM -0500 |
V4.0:(not available) V3.1: 5.5 MEDIUM V2.0:(not available) |
CVE-2022-49035 |
In the Linux kernel, the following vulnerability has been resolved: media: s5p_cec: limit msg.len to CEC_MAX_MSG_SIZE I expect that the hardware will have limited this to 16, but just in case it hasn't, check for this corner case. Published: January 02, 2025; 10:15:18 AM -0500 |
V4.0:(not available) V3.1: 5.5 MEDIUM V2.0:(not available) |
CVE-2024-56756 |
In the Linux kernel, the following vulnerability has been resolved: nvme-pci: fix freeing of the HMB descriptor table The HMB descriptor table is sized to the maximum number of descriptors that could be used for a given device, but __nvme_alloc_host_mem could break out of the loop earlier on memory allocation failure and end up using less descriptors than planned for, which leads to an incorrect size passed to dma_free_coherent. In practice this was not showing up because the number of descriptors tends to be low and the dma coherent allocator always allocates and frees at least a page. Published: December 29, 2024; 7:15:09 AM -0500 |
V4.0:(not available) V3.1: 5.5 MEDIUM V2.0:(not available) |
CVE-2024-56755 |
In the Linux kernel, the following vulnerability has been resolved: netfs/fscache: Add a memory barrier for FSCACHE_VOLUME_CREATING In fscache_create_volume(), there is a missing memory barrier between the bit-clearing operation and the wake-up operation. This may cause a situation where, after a wake-up, the bit-clearing operation hasn't been detected yet, leading to an indefinite wait. The triggering process is as follows: [cookie1] [cookie2] [volume_work] fscache_perform_lookup fscache_create_volume fscache_perform_lookup fscache_create_volume fscache_create_volume_work cachefiles_acquire_volume clear_and_wake_up_bit test_and_set_bit test_and_set_bit goto maybe_wait goto no_wait In the above process, cookie1 and cookie2 has the same volume. When cookie1 enters the -no_wait- process, it will clear the bit and wake up the waiting process. If a barrier is missing, it may cause cookie2 to remain in the -wait- process indefinitely. In commit 3288666c7256 ("fscache: Use clear_and_wake_up_bit() in fscache_create_volume_work()"), barriers were added to similar operations in fscache_create_volume_work(), but fscache_create_volume() was missed. By combining the clear and wake operations into clear_and_wake_up_bit() to fix this issue. Published: December 29, 2024; 7:15:09 AM -0500 |
V4.0:(not available) V3.1: 5.5 MEDIUM V2.0:(not available) |
CVE-2024-56754 |
In the Linux kernel, the following vulnerability has been resolved: crypto: caam - Fix the pointer passed to caam_qi_shutdown() The type of the last parameter given to devm_add_action_or_reset() is "struct caam_drv_private *", but in caam_qi_shutdown(), it is casted to "struct device *". Pass the correct parameter to devm_add_action_or_reset() so that the resources are released as expected. Published: December 29, 2024; 7:15:08 AM -0500 |
V4.0:(not available) V3.1: 5.5 MEDIUM V2.0:(not available) |
CVE-2024-56751 |
In the Linux kernel, the following vulnerability has been resolved: ipv6: release nexthop on device removal The CI is hitting some aperiodic hangup at device removal time in the pmtu.sh self-test: unregister_netdevice: waiting for veth_A-R1 to become free. Usage count = 6 ref_tracker: veth_A-R1@ffff888013df15d8 has 1/5 users at dst_init+0x84/0x4a0 dst_alloc+0x97/0x150 ip6_dst_alloc+0x23/0x90 ip6_rt_pcpu_alloc+0x1e6/0x520 ip6_pol_route+0x56f/0x840 fib6_rule_lookup+0x334/0x630 ip6_route_output_flags+0x259/0x480 ip6_dst_lookup_tail.constprop.0+0x5c2/0x940 ip6_dst_lookup_flow+0x88/0x190 udp_tunnel6_dst_lookup+0x2a7/0x4c0 vxlan_xmit_one+0xbde/0x4a50 [vxlan] vxlan_xmit+0x9ad/0xf20 [vxlan] dev_hard_start_xmit+0x10e/0x360 __dev_queue_xmit+0xf95/0x18c0 arp_solicit+0x4a2/0xe00 neigh_probe+0xaa/0xf0 While the first suspect is the dst_cache, explicitly tracking the dst owing the last device reference via probes proved such dst is held by the nexthop in the originating fib6_info. Similar to commit f5b51fe804ec ("ipv6: route: purge exception on removal"), we need to explicitly release the originating fib info when disconnecting a to-be-removed device from a live ipv6 dst: move the fib6_info cleanup into ip6_dst_ifdown(). Tested running: ./pmtu.sh cleanup_ipv6_exception in a tight loop for more than 400 iterations with no spat, running an unpatched kernel I observed a splat every ~10 iterations. Published: December 29, 2024; 7:15:08 AM -0500 |
V4.0:(not available) V3.1: 5.5 MEDIUM V2.0:(not available) |
CVE-2024-56748 |
In the Linux kernel, the following vulnerability has been resolved: scsi: qedf: Fix a possible memory leak in qedf_alloc_and_init_sb() Hook "qed_ops->common->sb_init = qed_sb_init" does not release the DMA memory sb_virt when it fails. Add dma_free_coherent() to free it. This is the same way as qedr_alloc_mem_sb() and qede_alloc_mem_sb(). Published: December 29, 2024; 7:15:08 AM -0500 |
V4.0:(not available) V3.1: 5.5 MEDIUM V2.0:(not available) |
CVE-2024-56747 |
In the Linux kernel, the following vulnerability has been resolved: scsi: qedi: Fix a possible memory leak in qedi_alloc_and_init_sb() Hook "qedi_ops->common->sb_init = qed_sb_init" does not release the DMA memory sb_virt when it fails. Add dma_free_coherent() to free it. This is the same way as qedr_alloc_mem_sb() and qede_alloc_mem_sb(). Published: December 29, 2024; 7:15:08 AM -0500 |
V4.0:(not available) V3.1: 5.5 MEDIUM V2.0:(not available) |
CVE-2024-56746 |
In the Linux kernel, the following vulnerability has been resolved: fbdev: sh7760fb: Fix a possible memory leak in sh7760fb_alloc_mem() When information such as info->screen_base is not ready, calling sh7760fb_free_mem() does not release memory correctly. Call dma_free_coherent() instead. Published: December 29, 2024; 7:15:08 AM -0500 |
V4.0:(not available) V3.1: 5.5 MEDIUM V2.0:(not available) |
CVE-2024-56745 |
In the Linux kernel, the following vulnerability has been resolved: PCI: Fix reset_method_store() memory leak In reset_method_store(), a string is allocated via kstrndup() and assigned to the local "options". options is then used in with strsep() to find spaces: while ((name = strsep(&options, " ")) != NULL) { If there are no remaining spaces, then options is set to NULL by strsep(), so the subsequent kfree(options) doesn't free the memory allocated via kstrndup(). Fix by using a separate tmp_options to iterate with strsep() so options is preserved. Published: December 29, 2024; 7:15:07 AM -0500 |
V4.0:(not available) V3.1: 5.5 MEDIUM V2.0:(not available) |
CVE-2024-56741 |
In the Linux kernel, the following vulnerability has been resolved: apparmor: test: Fix memory leak for aa_unpack_strdup() The string allocated by kmemdup() in aa_unpack_strdup() is not freed and cause following memory leaks, free them to fix it. unreferenced object 0xffffff80c6af8a50 (size 8): comm "kunit_try_catch", pid 225, jiffies 4294894407 hex dump (first 8 bytes): 74 65 73 74 69 6e 67 00 testing. backtrace (crc 5eab668b): [<0000000001e3714d>] kmemleak_alloc+0x34/0x40 [<000000006e6c7776>] __kmalloc_node_track_caller_noprof+0x300/0x3e0 [<000000006870467c>] kmemdup_noprof+0x34/0x60 [<000000001176bb03>] aa_unpack_strdup+0xd0/0x18c [<000000008ecde918>] policy_unpack_test_unpack_strdup_with_null_name+0xf8/0x3ec [<0000000032ef8f77>] kunit_try_run_case+0x13c/0x3ac [<00000000f3edea23>] kunit_generic_run_threadfn_adapter+0x80/0xec [<00000000adf936cf>] kthread+0x2e8/0x374 [<0000000041bb1628>] ret_from_fork+0x10/0x20 unreferenced object 0xffffff80c2a29090 (size 8): comm "kunit_try_catch", pid 227, jiffies 4294894409 hex dump (first 8 bytes): 74 65 73 74 69 6e 67 00 testing. backtrace (crc 5eab668b): [<0000000001e3714d>] kmemleak_alloc+0x34/0x40 [<000000006e6c7776>] __kmalloc_node_track_caller_noprof+0x300/0x3e0 [<000000006870467c>] kmemdup_noprof+0x34/0x60 [<000000001176bb03>] aa_unpack_strdup+0xd0/0x18c [<0000000046a45c1a>] policy_unpack_test_unpack_strdup_with_name+0xd0/0x3c4 [<0000000032ef8f77>] kunit_try_run_case+0x13c/0x3ac [<00000000f3edea23>] kunit_generic_run_threadfn_adapter+0x80/0xec [<00000000adf936cf>] kthread+0x2e8/0x374 [<0000000041bb1628>] ret_from_fork+0x10/0x20 Published: December 29, 2024; 7:15:07 AM -0500 |
V4.0:(not available) V3.1: 5.5 MEDIUM V2.0:(not available) |
CVE-2024-56739 |
In the Linux kernel, the following vulnerability has been resolved: rtc: check if __rtc_read_time was successful in rtc_timer_do_work() If the __rtc_read_time call fails,, the struct rtc_time tm; may contain uninitialized data, or an illegal date/time read from the RTC hardware. When calling rtc_tm_to_ktime later, the result may be a very large value (possibly KTIME_MAX). If there are periodic timers in rtc->timerqueue, they will continually expire, may causing kernel softlockup. Published: December 29, 2024; 7:15:07 AM -0500 |
V4.0:(not available) V3.1: 5.5 MEDIUM V2.0:(not available) |
CVE-2024-56728 |
In the Linux kernel, the following vulnerability has been resolved: octeontx2-pf: handle otx2_mbox_get_rsp errors in otx2_ethtool.c Add error pointer check after calling otx2_mbox_get_rsp(). Published: December 29, 2024; 7:15:06 AM -0500 |
V4.0:(not available) V3.1: 5.5 MEDIUM V2.0:(not available) |
CVE-2024-56727 |
In the Linux kernel, the following vulnerability has been resolved: octeontx2-pf: handle otx2_mbox_get_rsp errors in otx2_flows.c Adding error pointer check after calling otx2_mbox_get_rsp(). Published: December 29, 2024; 7:15:06 AM -0500 |
V4.0:(not available) V3.1: 5.5 MEDIUM V2.0:(not available) |
CVE-2024-56726 |
In the Linux kernel, the following vulnerability has been resolved: octeontx2-pf: handle otx2_mbox_get_rsp errors in cn10k.c Add error pointer check after calling otx2_mbox_get_rsp(). Published: December 29, 2024; 7:15:06 AM -0500 |
V4.0:(not available) V3.1: 5.5 MEDIUM V2.0:(not available) |
CVE-2024-56724 |
In the Linux kernel, the following vulnerability has been resolved: mfd: intel_soc_pmic_bxtwc: Use IRQ domain for TMU device While design wise the idea of converting the driver to use the hierarchy of the IRQ chips is correct, the implementation has (inherited) flaws. This was unveiled when platform_get_irq() had started WARN() on IRQ 0 that is supposed to be a Linux IRQ number (also known as vIRQ). Rework the driver to respect IRQ domain when creating each MFD device separately, as the domain is not the same for all of them. Published: December 29, 2024; 7:15:06 AM -0500 |
V4.0:(not available) V3.1: 5.5 MEDIUM V2.0:(not available) |
CVE-2024-56723 |
In the Linux kernel, the following vulnerability has been resolved: mfd: intel_soc_pmic_bxtwc: Use IRQ domain for PMIC devices While design wise the idea of converting the driver to use the hierarchy of the IRQ chips is correct, the implementation has (inherited) flaws. This was unveiled when platform_get_irq() had started WARN() on IRQ 0 that is supposed to be a Linux IRQ number (also known as vIRQ). Rework the driver to respect IRQ domain when creating each MFD device separately, as the domain is not the same for all of them. Published: December 29, 2024; 7:15:06 AM -0500 |
V4.0:(not available) V3.1: 5.5 MEDIUM V2.0:(not available) |
CVE-2024-56722 |
In the Linux kernel, the following vulnerability has been resolved: RDMA/hns: Fix cpu stuck caused by printings during reset During reset, cmd to destroy resources such as qp, cq, and mr may fail, and error logs will be printed. When a large number of resources are destroyed, there will be lots of printings, and it may lead to a cpu stuck. Delete some unnecessary printings and replace other printing functions in these paths with the ratelimited version. Published: December 29, 2024; 7:15:06 AM -0500 |
V4.0:(not available) V3.1: 5.5 MEDIUM V2.0:(not available) |