U.S. flag   An official website of the United States government
Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Https

Secure .gov websites use HTTPS
A lock (Dot gov) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Results (Refine Search)

Search Parameters:
  • Keyword (text search): cpe:2.3:o:linux:linux_kernel:6.0.3:*:*:*:*:*:*:*
  • CPE Name Search: true
There are 1,307 matching records.
Displaying matches 181 through 200.
Vuln ID Summary CVSS Severity
CVE-2023-52898

In the Linux kernel, the following vulnerability has been resolved: xhci: Fix null pointer dereference when host dies Make sure xhci_free_dev() and xhci_kill_endpoint_urbs() do not race and cause null pointer dereference when host suddenly dies. Usb core may call xhci_free_dev() which frees the xhci->devs[slot_id] virt device at the same time that xhci_kill_endpoint_urbs() tries to loop through all the device's endpoints, checking if there are any cancelled urbs left to give back. hold the xhci spinlock while freeing the virt device

Published: August 21, 2024; 3:15:06 AM -0400
V4.0:(not available)
V3.1: 4.7 MEDIUM
V2.0:(not available)
CVE-2023-52896

In the Linux kernel, the following vulnerability has been resolved: btrfs: fix race between quota rescan and disable leading to NULL pointer deref If we have one task trying to start the quota rescan worker while another one is trying to disable quotas, we can end up hitting a race that results in the quota rescan worker doing a NULL pointer dereference. The steps for this are the following: 1) Quotas are enabled; 2) Task A calls the quota rescan ioctl and enters btrfs_qgroup_rescan(). It calls qgroup_rescan_init() which returns 0 (success) and then joins a transaction and commits it; 3) Task B calls the quota disable ioctl and enters btrfs_quota_disable(). It clears the bit BTRFS_FS_QUOTA_ENABLED from fs_info->flags and calls btrfs_qgroup_wait_for_completion(), which returns immediately since the rescan worker is not yet running. Then it starts a transaction and locks fs_info->qgroup_ioctl_lock; 4) Task A queues the rescan worker, by calling btrfs_queue_work(); 5) The rescan worker starts, and calls rescan_should_stop() at the start of its while loop, which results in 0 iterations of the loop, since the flag BTRFS_FS_QUOTA_ENABLED was cleared from fs_info->flags by task B at step 3); 6) Task B sets fs_info->quota_root to NULL; 7) The rescan worker tries to start a transaction and uses fs_info->quota_root as the root argument for btrfs_start_transaction(). This results in a NULL pointer dereference down the call chain of btrfs_start_transaction(). The stack trace is something like the one reported in Link tag below: general protection fault, probably for non-canonical address 0xdffffc0000000041: 0000 [#1] PREEMPT SMP KASAN KASAN: null-ptr-deref in range [0x0000000000000208-0x000000000000020f] CPU: 1 PID: 34 Comm: kworker/u4:2 Not tainted 6.1.0-syzkaller-13872-gb6bb9676f216 #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 10/26/2022 Workqueue: btrfs-qgroup-rescan btrfs_work_helper RIP: 0010:start_transaction+0x48/0x10f0 fs/btrfs/transaction.c:564 Code: 48 89 fb 48 (...) RSP: 0018:ffffc90000ab7ab0 EFLAGS: 00010206 RAX: 0000000000000041 RBX: 0000000000000208 RCX: ffff88801779ba80 RDX: 0000000000000000 RSI: 0000000000000001 RDI: 0000000000000000 RBP: dffffc0000000000 R08: 0000000000000001 R09: fffff52000156f5d R10: fffff52000156f5d R11: 1ffff92000156f5c R12: 0000000000000000 R13: 0000000000000001 R14: 0000000000000001 R15: 0000000000000003 FS: 0000000000000000(0000) GS:ffff8880b9900000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f2bea75b718 CR3: 000000001d0cc000 CR4: 00000000003506e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: <TASK> btrfs_qgroup_rescan_worker+0x3bb/0x6a0 fs/btrfs/qgroup.c:3402 btrfs_work_helper+0x312/0x850 fs/btrfs/async-thread.c:280 process_one_work+0x877/0xdb0 kernel/workqueue.c:2289 worker_thread+0xb14/0x1330 kernel/workqueue.c:2436 kthread+0x266/0x300 kernel/kthread.c:376 ret_from_fork+0x1f/0x30 arch/x86/entry/entry_64.S:308 </TASK> Modules linked in: So fix this by having the rescan worker function not attempt to start a transaction if it didn't do any rescan work.

Published: August 21, 2024; 3:15:06 AM -0400
V4.0:(not available)
V3.1: 4.7 MEDIUM
V2.0:(not available)
CVE-2023-52894

In the Linux kernel, the following vulnerability has been resolved: usb: gadget: f_ncm: fix potential NULL ptr deref in ncm_bitrate() In Google internal bug 265639009 we've received an (as yet) unreproducible crash report from an aarch64 GKI 5.10.149-android13 running device. AFAICT the source code is at: https://android.googlesource.com/kernel/common/+/refs/tags/ASB-2022-12-05_13-5.10 The call stack is: ncm_close() -> ncm_notify() -> ncm_do_notify() with the crash at: ncm_do_notify+0x98/0x270 Code: 79000d0b b9000a6c f940012a f9400269 (b9405d4b) Which I believe disassembles to (I don't know ARM assembly, but it looks sane enough to me...): // halfword (16-bit) store presumably to event->wLength (at offset 6 of struct usb_cdc_notification) 0B 0D 00 79 strh w11, [x8, #6] // word (32-bit) store presumably to req->Length (at offset 8 of struct usb_request) 6C 0A 00 B9 str w12, [x19, #8] // x10 (NULL) was read here from offset 0 of valid pointer x9 // IMHO we're reading 'cdev->gadget' and getting NULL // gadget is indeed at offset 0 of struct usb_composite_dev 2A 01 40 F9 ldr x10, [x9] // loading req->buf pointer, which is at offset 0 of struct usb_request 69 02 40 F9 ldr x9, [x19] // x10 is null, crash, appears to be attempt to read cdev->gadget->max_speed 4B 5D 40 B9 ldr w11, [x10, #0x5c] which seems to line up with ncm_do_notify() case NCM_NOTIFY_SPEED code fragment: event->wLength = cpu_to_le16(8); req->length = NCM_STATUS_BYTECOUNT; /* SPEED_CHANGE data is up/down speeds in bits/sec */ data = req->buf + sizeof *event; data[0] = cpu_to_le32(ncm_bitrate(cdev->gadget)); My analysis of registers and NULL ptr deref crash offset (Unable to handle kernel NULL pointer dereference at virtual address 000000000000005c) heavily suggests that the crash is due to 'cdev->gadget' being NULL when executing: data[0] = cpu_to_le32(ncm_bitrate(cdev->gadget)); which calls: ncm_bitrate(NULL) which then calls: gadget_is_superspeed(NULL) which reads ((struct usb_gadget *)NULL)->max_speed and hits a panic. AFAICT, if I'm counting right, the offset of max_speed is indeed 0x5C. (remember there's a GKI KABI reservation of 16 bytes in struct work_struct) It's not at all clear to me how this is all supposed to work... but returning 0 seems much better than panic-ing...

Published: August 21, 2024; 3:15:05 AM -0400
V4.0:(not available)
V3.1: 5.5 MEDIUM
V2.0:(not available)
CVE-2023-52893

In the Linux kernel, the following vulnerability has been resolved: gsmi: fix null-deref in gsmi_get_variable We can get EFI variables without fetching the attribute, so we must allow for that in gsmi. commit 859748255b43 ("efi: pstore: Omit efivars caching EFI varstore access layer") added a new get_variable call with attr=NULL, which triggers panic in gsmi.

Published: August 21, 2024; 3:15:05 AM -0400
V4.0:(not available)
V3.1: 5.5 MEDIUM
V2.0:(not available)
CVE-2022-48899

In the Linux kernel, the following vulnerability has been resolved: drm/virtio: Fix GEM handle creation UAF Userspace can guess the handle value and try to race GEM object creation with handle close, resulting in a use-after-free if we dereference the object after dropping the handle's reference. For that reason, dropping the handle's reference must be done *after* we are done dereferencing the object.

Published: August 21, 2024; 3:15:05 AM -0400
V4.0:(not available)
V3.1: 4.7 MEDIUM
V2.0:(not available)
CVE-2022-48898

In the Linux kernel, the following vulnerability has been resolved: drm/msm/dp: do not complete dp_aux_cmd_fifo_tx() if irq is not for aux transfer There are 3 possible interrupt sources are handled by DP controller, HPDstatus, Controller state changes and Aux read/write transaction. At every irq, DP controller have to check isr status of every interrupt sources and service the interrupt if its isr status bits shows interrupts are pending. There is potential race condition may happen at current aux isr handler implementation since it is always complete dp_aux_cmd_fifo_tx() even irq is not for aux read or write transaction. This may cause aux read transaction return premature if host aux data read is in the middle of waiting for sink to complete transferring data to host while irq happen. This will cause host's receiving buffer contains unexpected data. This patch fixes this problem by checking aux isr and return immediately at aux isr handler if there are no any isr status bits set. Current there is a bug report regrading eDP edid corruption happen during system booting up. After lengthy debugging to found that VIDEO_READY interrupt was continuously firing during system booting up which cause dp_aux_isr() to complete dp_aux_cmd_fifo_tx() prematurely to retrieve data from aux hardware buffer which is not yet contains complete data transfer from sink. This cause edid corruption. Follows are the signature at kernel logs when problem happen, EDID has corrupt header panel-simple-dp-aux aux-aea0000.edp: Couldn't identify panel via EDID Changes in v2: -- do complete if (ret == IRQ_HANDLED) ay dp-aux_isr() -- add more commit text Changes in v3: -- add Stephen suggested -- dp_aux_isr() return IRQ_XXX back to caller -- dp_ctrl_isr() return IRQ_XXX back to caller Changes in v4: -- split into two patches Changes in v5: -- delete empty line between tags Changes in v6: -- remove extra "that" and fixed line more than 75 char at commit text Patchwork: https://patchwork.freedesktop.org/patch/516121/

Published: August 21, 2024; 3:15:05 AM -0400
V4.0:(not available)
V3.1: 4.7 MEDIUM
V2.0:(not available)
CVE-2022-48897

In the Linux kernel, the following vulnerability has been resolved: arm64/mm: fix incorrect file_map_count for invalid pmd The page table check trigger BUG_ON() unexpectedly when split hugepage: ------------[ cut here ]------------ kernel BUG at mm/page_table_check.c:119! Internal error: Oops - BUG: 00000000f2000800 [#1] SMP Dumping ftrace buffer: (ftrace buffer empty) Modules linked in: CPU: 7 PID: 210 Comm: transhuge-stres Not tainted 6.1.0-rc3+ #748 Hardware name: linux,dummy-virt (DT) pstate: 20000005 (nzCv daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--) pc : page_table_check_set.isra.0+0x398/0x468 lr : page_table_check_set.isra.0+0x1c0/0x468 [...] Call trace: page_table_check_set.isra.0+0x398/0x468 __page_table_check_pte_set+0x160/0x1c0 __split_huge_pmd_locked+0x900/0x1648 __split_huge_pmd+0x28c/0x3b8 unmap_page_range+0x428/0x858 unmap_single_vma+0xf4/0x1c8 zap_page_range+0x2b0/0x410 madvise_vma_behavior+0xc44/0xe78 do_madvise+0x280/0x698 __arm64_sys_madvise+0x90/0xe8 invoke_syscall.constprop.0+0xdc/0x1d8 do_el0_svc+0xf4/0x3f8 el0_svc+0x58/0x120 el0t_64_sync_handler+0xb8/0xc0 el0t_64_sync+0x19c/0x1a0 [...] On arm64, pmd_leaf() will return true even if the pmd is invalid due to pmd_present_invalid() check. So in pmdp_invalidate() the file_map_count will not only decrease once but also increase once. Then in set_pte_at(), the file_map_count increase again, and so trigger BUG_ON() unexpectedly. Add !pmd_present_invalid() check in pmd_user_accessible_page() to fix the problem.

Published: August 21, 2024; 3:15:05 AM -0400
V4.0:(not available)
V3.1: 5.5 MEDIUM
V2.0:(not available)
CVE-2022-48896

In the Linux kernel, the following vulnerability has been resolved: ixgbe: fix pci device refcount leak As the comment of pci_get_domain_bus_and_slot() says, it returns a PCI device with refcount incremented, when finish using it, the caller must decrement the reference count by calling pci_dev_put(). In ixgbe_get_first_secondary_devfn() and ixgbe_x550em_a_has_mii(), pci_dev_put() is called to avoid leak.

Published: August 21, 2024; 3:15:05 AM -0400
V4.0:(not available)
V3.1: 5.5 MEDIUM
V2.0:(not available)
CVE-2022-48893

In the Linux kernel, the following vulnerability has been resolved: drm/i915/gt: Cleanup partial engine discovery failures If we abort driver initialisation in the middle of gt/engine discovery, some engines will be fully setup and some not. Those incompletely setup engines only have 'engine->release == NULL' and so will leak any of the common objects allocated. v2: - Drop the destroy_pinned_context() helper for now. It's not really worth it with just a single callsite at the moment. (Janusz)

Published: August 21, 2024; 3:15:05 AM -0400
V4.0:(not available)
V3.1: 5.5 MEDIUM
V2.0:(not available)
CVE-2022-48892

In the Linux kernel, the following vulnerability has been resolved: sched/core: Fix use-after-free bug in dup_user_cpus_ptr() Since commit 07ec77a1d4e8 ("sched: Allow task CPU affinity to be restricted on asymmetric systems"), the setting and clearing of user_cpus_ptr are done under pi_lock for arm64 architecture. However, dup_user_cpus_ptr() accesses user_cpus_ptr without any lock protection. Since sched_setaffinity() can be invoked from another process, the process being modified may be undergoing fork() at the same time. When racing with the clearing of user_cpus_ptr in __set_cpus_allowed_ptr_locked(), it can lead to user-after-free and possibly double-free in arm64 kernel. Commit 8f9ea86fdf99 ("sched: Always preserve the user requested cpumask") fixes this problem as user_cpus_ptr, once set, will never be cleared in a task's lifetime. However, this bug was re-introduced in commit 851a723e45d1 ("sched: Always clear user_cpus_ptr in do_set_cpus_allowed()") which allows the clearing of user_cpus_ptr in do_set_cpus_allowed(). This time, it will affect all arches. Fix this bug by always clearing the user_cpus_ptr of the newly cloned/forked task before the copying process starts and check the user_cpus_ptr state of the source task under pi_lock. Note to stable, this patch won't be applicable to stable releases. Just copy the new dup_user_cpus_ptr() function over.

Published: August 21, 2024; 3:15:05 AM -0400
V4.0:(not available)
V3.1: 7.8 HIGH
V2.0:(not available)
CVE-2022-48891

In the Linux kernel, the following vulnerability has been resolved: regulator: da9211: Use irq handler when ready If the system does not come from reset (like when it is kexec()), the regulator might have an IRQ waiting for us. If we enable the IRQ handler before its structures are ready, we crash. This patch fixes: [ 1.141839] Unable to handle kernel read from unreadable memory at virtual address 0000000000000078 [ 1.316096] Call trace: [ 1.316101] blocking_notifier_call_chain+0x20/0xa8 [ 1.322757] cpu cpu0: dummy supplies not allowed for exclusive requests [ 1.327823] regulator_notifier_call_chain+0x1c/0x2c [ 1.327825] da9211_irq_handler+0x68/0xf8 [ 1.327829] irq_thread+0x11c/0x234 [ 1.327833] kthread+0x13c/0x154

Published: August 21, 2024; 3:15:05 AM -0400
V4.0:(not available)
V3.1: 5.5 MEDIUM
V2.0:(not available)
CVE-2022-48890

In the Linux kernel, the following vulnerability has been resolved: scsi: storvsc: Fix swiotlb bounce buffer leak in confidential VM storvsc_queuecommand() maps the scatter/gather list using scsi_dma_map(), which in a confidential VM allocates swiotlb bounce buffers. If the I/O submission fails in storvsc_do_io(), the I/O is typically retried by higher level code, but the bounce buffer memory is never freed. The mostly like cause of I/O submission failure is a full VMBus channel ring buffer, which is not uncommon under high I/O loads. Eventually enough bounce buffer memory leaks that the confidential VM can't do any I/O. The same problem can arise in a non-confidential VM with kernel boot parameter swiotlb=force. Fix this by doing scsi_dma_unmap() in the case of an I/O submission error, which frees the bounce buffer memory.

Published: August 21, 2024; 3:15:05 AM -0400
V4.0:(not available)
V3.1: 5.5 MEDIUM
V2.0:(not available)
CVE-2022-48889

In the Linux kernel, the following vulnerability has been resolved: ASoC: Intel: sof-nau8825: fix module alias overflow The maximum name length for a platform_device_id entry is 20 characters including the trailing NUL byte. The sof_nau8825.c file exceeds that, which causes an obscure error message: sound/soc/intel/boards/snd-soc-sof_nau8825.mod.c:35:45: error: illegal character encoding in string literal [-Werror,-Winvalid-source-encoding] MODULE_ALIAS("platform:adl_max98373_nau8825<U+0018><AA>"); ^~~~ include/linux/module.h:168:49: note: expanded from macro 'MODULE_ALIAS' ^~~~~~ include/linux/module.h:165:56: note: expanded from macro 'MODULE_INFO' ^~~~ include/linux/moduleparam.h:26:47: note: expanded from macro '__MODULE_INFO' = __MODULE_INFO_PREFIX __stringify(tag) "=" info I could not figure out how to make the module handling robust enough to handle this better, but as a quick fix, using slightly shorter names that are still unique avoids the build issue.

Published: August 21, 2024; 3:15:05 AM -0400
V4.0:(not available)
V3.1: 5.5 MEDIUM
V2.0:(not available)
CVE-2022-48888

In the Linux kernel, the following vulnerability has been resolved: drm/msm/dpu: Fix memory leak in msm_mdss_parse_data_bus_icc_path of_icc_get() alloc resources for path1, we should release it when not need anymore. Early return when IS_ERR_OR_NULL(path0) may leak path1. Defer getting path1 to fix this. Patchwork: https://patchwork.freedesktop.org/patch/514264/

Published: August 21, 2024; 3:15:05 AM -0400
V4.0:(not available)
V3.1: 5.5 MEDIUM
V2.0:(not available)
CVE-2022-48887

In the Linux kernel, the following vulnerability has been resolved: drm/vmwgfx: Remove rcu locks from user resources User resource lookups used rcu to avoid two extra atomics. Unfortunately the rcu paths were buggy and it was easy to make the driver crash by submitting command buffers from two different threads. Because the lookups never show up in performance profiles replace them with a regular spin lock which fixes the races in accesses to those shared resources. Fixes kernel oops'es in IGT's vmwgfx execution_buffer stress test and seen crashes with apps using shared resources.

Published: August 21, 2024; 3:15:05 AM -0400
V4.0:(not available)
V3.1: 5.5 MEDIUM
V2.0:(not available)
CVE-2022-48886

In the Linux kernel, the following vulnerability has been resolved: ice: Add check for kzalloc Add the check for the return value of kzalloc in order to avoid NULL pointer dereference. Moreover, use the goto-label to share the clean code.

Published: August 21, 2024; 3:15:05 AM -0400
V4.0:(not available)
V3.1: 5.5 MEDIUM
V2.0:(not available)
CVE-2022-48885

In the Linux kernel, the following vulnerability has been resolved: ice: Fix potential memory leak in ice_gnss_tty_write() The ice_gnss_tty_write() return directly if the write_buf alloc failed, leaking the cmd_buf. Fix by free cmd_buf if write_buf alloc failed.

Published: August 21, 2024; 3:15:05 AM -0400
V4.0:(not available)
V3.1: 5.5 MEDIUM
V2.0:(not available)
CVE-2022-48881

In the Linux kernel, the following vulnerability has been resolved: platform/x86/amd: Fix refcount leak in amd_pmc_probe pci_get_domain_bus_and_slot() takes reference, the caller should release the reference by calling pci_dev_put() after use. Call pci_dev_put() in the error path to fix this.

Published: August 21, 2024; 3:15:04 AM -0400
V4.0:(not available)
V3.1: 7.1 HIGH
V2.0:(not available)
CVE-2022-48879

In the Linux kernel, the following vulnerability has been resolved: efi: fix NULL-deref in init error path In cases where runtime services are not supported or have been disabled, the runtime services workqueue will never have been allocated. Do not try to destroy the workqueue unconditionally in the unlikely event that EFI initialisation fails to avoid dereferencing a NULL pointer.

Published: August 21, 2024; 3:15:04 AM -0400
V4.0:(not available)
V3.1: 5.5 MEDIUM
V2.0:(not available)
CVE-2022-48878

In the Linux kernel, the following vulnerability has been resolved: Bluetooth: hci_qca: Fix driver shutdown on closed serdev The driver shutdown callback (which sends EDL_SOC_RESET to the device over serdev) should not be invoked when HCI device is not open (e.g. if hci_dev_open_sync() failed), because the serdev and its TTY are not open either. Also skip this step if device is powered off (qca_power_shutdown()). The shutdown callback causes use-after-free during system reboot with Qualcomm Atheros Bluetooth: Unable to handle kernel paging request at virtual address 0072662f67726fd7 ... CPU: 6 PID: 1 Comm: systemd-shutdow Tainted: G W 6.1.0-rt5-00325-g8a5f56bcfcca #8 Hardware name: Qualcomm Technologies, Inc. Robotics RB5 (DT) Call trace: tty_driver_flush_buffer+0x4/0x30 serdev_device_write_flush+0x24/0x34 qca_serdev_shutdown+0x80/0x130 [hci_uart] device_shutdown+0x15c/0x260 kernel_restart+0x48/0xac KASAN report: BUG: KASAN: use-after-free in tty_driver_flush_buffer+0x1c/0x50 Read of size 8 at addr ffff16270c2e0018 by task systemd-shutdow/1 CPU: 7 PID: 1 Comm: systemd-shutdow Not tainted 6.1.0-next-20221220-00014-gb85aaf97fb01-dirty #28 Hardware name: Qualcomm Technologies, Inc. Robotics RB5 (DT) Call trace: dump_backtrace.part.0+0xdc/0xf0 show_stack+0x18/0x30 dump_stack_lvl+0x68/0x84 print_report+0x188/0x488 kasan_report+0xa4/0xf0 __asan_load8+0x80/0xac tty_driver_flush_buffer+0x1c/0x50 ttyport_write_flush+0x34/0x44 serdev_device_write_flush+0x48/0x60 qca_serdev_shutdown+0x124/0x274 device_shutdown+0x1e8/0x350 kernel_restart+0x48/0xb0 __do_sys_reboot+0x244/0x2d0 __arm64_sys_reboot+0x54/0x70 invoke_syscall+0x60/0x190 el0_svc_common.constprop.0+0x7c/0x160 do_el0_svc+0x44/0xf0 el0_svc+0x2c/0x6c el0t_64_sync_handler+0xbc/0x140 el0t_64_sync+0x190/0x194

Published: August 21, 2024; 3:15:04 AM -0400
V4.0:(not available)
V3.1: 7.8 HIGH
V2.0:(not available)