U.S. flag   An official website of the United States government
Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Https

Secure .gov websites use HTTPS
A lock (Dot gov) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Results (Refine Search)

Search Parameters:
  • Keyword (text search): cpe:2.3:o:linux:linux_kernel:6.7:rc6:*:*:*:*:*:*
  • CPE Name Search: true
There are 1,706 matching records.
Displaying matches 221 through 240.
Vuln ID Summary CVSS Severity
CVE-2024-50080

In the Linux kernel, the following vulnerability has been resolved: ublk: don't allow user copy for unprivileged device UBLK_F_USER_COPY requires userspace to call write() on ublk char device for filling request buffer, and unprivileged device can't be trusted. So don't allow user copy for unprivileged device.

Published: October 28, 2024; 9:15:05 PM -0400
V4.0:(not available)
V3.1: 5.5 MEDIUM
V2.0:(not available)
CVE-2024-50078

In the Linux kernel, the following vulnerability has been resolved: Bluetooth: Call iso_exit() on module unload If iso_init() has been called, iso_exit() must be called on module unload. Without that, the struct proto that iso_init() registered with proto_register() becomes invalid, which could cause unpredictable problems later. In my case, with CONFIG_LIST_HARDENED and CONFIG_BUG_ON_DATA_CORRUPTION enabled, loading the module again usually triggers this BUG(): list_add corruption. next->prev should be prev (ffffffffb5355fd0), but was 0000000000000068. (next=ffffffffc0a010d0). ------------[ cut here ]------------ kernel BUG at lib/list_debug.c:29! Oops: invalid opcode: 0000 [#1] PREEMPT SMP PTI CPU: 1 PID: 4159 Comm: modprobe Not tainted 6.10.11-4+bt2-ao-desktop #1 RIP: 0010:__list_add_valid_or_report+0x61/0xa0 ... __list_add_valid_or_report+0x61/0xa0 proto_register+0x299/0x320 hci_sock_init+0x16/0xc0 [bluetooth] bt_init+0x68/0xd0 [bluetooth] __pfx_bt_init+0x10/0x10 [bluetooth] do_one_initcall+0x80/0x2f0 do_init_module+0x8b/0x230 __do_sys_init_module+0x15f/0x190 do_syscall_64+0x68/0x110 ...

Published: October 28, 2024; 9:15:04 PM -0400
V4.0:(not available)
V3.1: 5.5 MEDIUM
V2.0:(not available)
CVE-2024-50077

In the Linux kernel, the following vulnerability has been resolved: Bluetooth: ISO: Fix multiple init when debugfs is disabled If bt_debugfs is not created successfully, which happens if either CONFIG_DEBUG_FS or CONFIG_DEBUG_FS_ALLOW_ALL is unset, then iso_init() returns early and does not set iso_inited to true. This means that a subsequent call to iso_init() will result in duplicate calls to proto_register(), bt_sock_register(), etc. With CONFIG_LIST_HARDENED and CONFIG_BUG_ON_DATA_CORRUPTION enabled, the duplicate call to proto_register() triggers this BUG(): list_add double add: new=ffffffffc0b280d0, prev=ffffffffbab56250, next=ffffffffc0b280d0. ------------[ cut here ]------------ kernel BUG at lib/list_debug.c:35! Oops: invalid opcode: 0000 [#1] PREEMPT SMP PTI CPU: 2 PID: 887 Comm: bluetoothd Not tainted 6.10.11-1-ao-desktop #1 RIP: 0010:__list_add_valid_or_report+0x9a/0xa0 ... __list_add_valid_or_report+0x9a/0xa0 proto_register+0x2b5/0x340 iso_init+0x23/0x150 [bluetooth] set_iso_socket_func+0x68/0x1b0 [bluetooth] kmem_cache_free+0x308/0x330 hci_sock_sendmsg+0x990/0x9e0 [bluetooth] __sock_sendmsg+0x7b/0x80 sock_write_iter+0x9a/0x110 do_iter_readv_writev+0x11d/0x220 vfs_writev+0x180/0x3e0 do_writev+0xca/0x100 ... This change removes the early return. The check for iso_debugfs being NULL was unnecessary, it is always NULL when iso_inited is false.

Published: October 28, 2024; 9:15:04 PM -0400
V4.0:(not available)
V3.1: 5.5 MEDIUM
V2.0:(not available)
CVE-2024-50076

In the Linux kernel, the following vulnerability has been resolved: vt: prevent kernel-infoleak in con_font_get() font.data may not initialize all memory spaces depending on the implementation of vc->vc_sw->con_font_get. This may cause info-leak, so to prevent this, it is safest to modify it to initialize the allocated memory space to 0, and it generally does not affect the overall performance of the system.

Published: October 28, 2024; 9:15:04 PM -0400
V4.0:(not available)
V3.1: 6.5 MEDIUM
V2.0:(not available)
CVE-2024-50075

In the Linux kernel, the following vulnerability has been resolved: xhci: tegra: fix checked USB2 port number If USB virtualizatoin is enabled, USB2 ports are shared between all Virtual Functions. The USB2 port number owned by an USB2 root hub in a Virtual Function may be less than total USB2 phy number supported by the Tegra XUSB controller. Using total USB2 phy number as port number to check all PORTSC values would cause invalid memory access. [ 116.923438] Unable to handle kernel paging request at virtual address 006c622f7665642f ... [ 117.213640] Call trace: [ 117.216783] tegra_xusb_enter_elpg+0x23c/0x658 [ 117.222021] tegra_xusb_runtime_suspend+0x40/0x68 [ 117.227260] pm_generic_runtime_suspend+0x30/0x50 [ 117.232847] __rpm_callback+0x84/0x3c0 [ 117.237038] rpm_suspend+0x2dc/0x740 [ 117.241229] pm_runtime_work+0xa0/0xb8 [ 117.245769] process_scheduled_works+0x24c/0x478 [ 117.251007] worker_thread+0x23c/0x328 [ 117.255547] kthread+0x104/0x1b0 [ 117.259389] ret_from_fork+0x10/0x20 [ 117.263582] Code: 54000222 f9461ae8 f8747908 b4ffff48 (f9400100)

Published: October 28, 2024; 9:15:04 PM -0400
V4.0:(not available)
V3.1: 5.5 MEDIUM
V2.0:(not available)
CVE-2024-50074

In the Linux kernel, the following vulnerability has been resolved: parport: Proper fix for array out-of-bounds access The recent fix for array out-of-bounds accesses replaced sprintf() calls blindly with snprintf(). However, since snprintf() returns the would-be-printed size, not the actually output size, the length calculation can still go over the given limit. Use scnprintf() instead of snprintf(), which returns the actually output letters, for addressing the potential out-of-bounds access properly.

Published: October 28, 2024; 9:15:04 PM -0400
V4.0:(not available)
V3.1: 7.8 HIGH
V2.0:(not available)
CVE-2024-50073

In the Linux kernel, the following vulnerability has been resolved: tty: n_gsm: Fix use-after-free in gsm_cleanup_mux BUG: KASAN: slab-use-after-free in gsm_cleanup_mux+0x77b/0x7b0 drivers/tty/n_gsm.c:3160 [n_gsm] Read of size 8 at addr ffff88815fe99c00 by task poc/3379 CPU: 0 UID: 0 PID: 3379 Comm: poc Not tainted 6.11.0+ #56 Hardware name: VMware, Inc. VMware Virtual Platform/440BX Desktop Reference Platform, BIOS 6.00 11/12/2020 Call Trace: <TASK> gsm_cleanup_mux+0x77b/0x7b0 drivers/tty/n_gsm.c:3160 [n_gsm] __pfx_gsm_cleanup_mux+0x10/0x10 drivers/tty/n_gsm.c:3124 [n_gsm] __pfx_sched_clock_cpu+0x10/0x10 kernel/sched/clock.c:389 update_load_avg+0x1c1/0x27b0 kernel/sched/fair.c:4500 __pfx_min_vruntime_cb_rotate+0x10/0x10 kernel/sched/fair.c:846 __rb_insert_augmented+0x492/0xbf0 lib/rbtree.c:161 gsmld_ioctl+0x395/0x1450 drivers/tty/n_gsm.c:3408 [n_gsm] _raw_spin_lock_irqsave+0x92/0xf0 arch/x86/include/asm/atomic.h:107 __pfx_gsmld_ioctl+0x10/0x10 drivers/tty/n_gsm.c:3822 [n_gsm] ktime_get+0x5e/0x140 kernel/time/timekeeping.c:195 ldsem_down_read+0x94/0x4e0 arch/x86/include/asm/atomic64_64.h:79 __pfx_ldsem_down_read+0x10/0x10 drivers/tty/tty_ldsem.c:338 __pfx_do_vfs_ioctl+0x10/0x10 fs/ioctl.c:805 tty_ioctl+0x643/0x1100 drivers/tty/tty_io.c:2818 Allocated by task 65: gsm_data_alloc.constprop.0+0x27/0x190 drivers/tty/n_gsm.c:926 [n_gsm] gsm_send+0x2c/0x580 drivers/tty/n_gsm.c:819 [n_gsm] gsm1_receive+0x547/0xad0 drivers/tty/n_gsm.c:3038 [n_gsm] gsmld_receive_buf+0x176/0x280 drivers/tty/n_gsm.c:3609 [n_gsm] tty_ldisc_receive_buf+0x101/0x1e0 drivers/tty/tty_buffer.c:391 tty_port_default_receive_buf+0x61/0xa0 drivers/tty/tty_port.c:39 flush_to_ldisc+0x1b0/0x750 drivers/tty/tty_buffer.c:445 process_scheduled_works+0x2b0/0x10d0 kernel/workqueue.c:3229 worker_thread+0x3dc/0x950 kernel/workqueue.c:3391 kthread+0x2a3/0x370 kernel/kthread.c:389 ret_from_fork+0x2d/0x70 arch/x86/kernel/process.c:147 ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:257 Freed by task 3367: kfree+0x126/0x420 mm/slub.c:4580 gsm_cleanup_mux+0x36c/0x7b0 drivers/tty/n_gsm.c:3160 [n_gsm] gsmld_ioctl+0x395/0x1450 drivers/tty/n_gsm.c:3408 [n_gsm] tty_ioctl+0x643/0x1100 drivers/tty/tty_io.c:2818 [Analysis] gsm_msg on the tx_ctrl_list or tx_data_list of gsm_mux can be freed by multi threads through ioctl,which leads to the occurrence of uaf. Protect it by gsm tx lock.

Published: October 28, 2024; 9:15:04 PM -0400
V4.0:(not available)
V3.1: 7.8 HIGH
V2.0:(not available)
CVE-2024-50072

In the Linux kernel, the following vulnerability has been resolved: x86/bugs: Use code segment selector for VERW operand Robert Gill reported below #GP in 32-bit mode when dosemu software was executing vm86() system call: general protection fault: 0000 [#1] PREEMPT SMP CPU: 4 PID: 4610 Comm: dosemu.bin Not tainted 6.6.21-gentoo-x86 #1 Hardware name: Dell Inc. PowerEdge 1950/0H723K, BIOS 2.7.0 10/30/2010 EIP: restore_all_switch_stack+0xbe/0xcf EAX: 00000000 EBX: 00000000 ECX: 00000000 EDX: 00000000 ESI: 00000000 EDI: 00000000 EBP: 00000000 ESP: ff8affdc DS: 0000 ES: 0000 FS: 0000 GS: 0033 SS: 0068 EFLAGS: 00010046 CR0: 80050033 CR2: 00c2101c CR3: 04b6d000 CR4: 000406d0 Call Trace: show_regs+0x70/0x78 die_addr+0x29/0x70 exc_general_protection+0x13c/0x348 exc_bounds+0x98/0x98 handle_exception+0x14d/0x14d exc_bounds+0x98/0x98 restore_all_switch_stack+0xbe/0xcf exc_bounds+0x98/0x98 restore_all_switch_stack+0xbe/0xcf This only happens in 32-bit mode when VERW based mitigations like MDS/RFDS are enabled. This is because segment registers with an arbitrary user value can result in #GP when executing VERW. Intel SDM vol. 2C documents the following behavior for VERW instruction: #GP(0) - If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit. CLEAR_CPU_BUFFERS macro executes VERW instruction before returning to user space. Use %cs selector to reference VERW operand. This ensures VERW will not #GP for an arbitrary user %ds. [ mingo: Fixed the SOB chain. ]

Published: October 28, 2024; 9:15:04 PM -0400
V4.0:(not available)
V3.1: 5.5 MEDIUM
V2.0:(not available)
CVE-2024-50070

In the Linux kernel, the following vulnerability has been resolved: pinctrl: stm32: check devm_kasprintf() returned value devm_kasprintf() can return a NULL pointer on failure but this returned value is not checked. Fix this lack and check the returned value. Found by code review.

Published: October 28, 2024; 9:15:04 PM -0400
V4.0:(not available)
V3.1: 5.5 MEDIUM
V2.0:(not available)
CVE-2024-50069

In the Linux kernel, the following vulnerability has been resolved: pinctrl: apple: check devm_kasprintf() returned value devm_kasprintf() can return a NULL pointer on failure but this returned value is not checked. Fix this lack and check the returned value. Found by code review.

Published: October 28, 2024; 9:15:04 PM -0400
V4.0:(not available)
V3.1: 5.5 MEDIUM
V2.0:(not available)
CVE-2024-50068

In the Linux kernel, the following vulnerability has been resolved: mm/damon/tests/sysfs-kunit.h: fix memory leak in damon_sysfs_test_add_targets() The sysfs_target->regions allocated in damon_sysfs_regions_alloc() is not freed in damon_sysfs_test_add_targets(), which cause the following memory leak, free it to fix it. unreferenced object 0xffffff80c2a8db80 (size 96): comm "kunit_try_catch", pid 187, jiffies 4294894363 hex dump (first 32 bytes): 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ backtrace (crc 0): [<0000000001e3714d>] kmemleak_alloc+0x34/0x40 [<000000008e6835c1>] __kmalloc_cache_noprof+0x26c/0x2f4 [<000000001286d9f8>] damon_sysfs_test_add_targets+0x1cc/0x738 [<0000000032ef8f77>] kunit_try_run_case+0x13c/0x3ac [<00000000f3edea23>] kunit_generic_run_threadfn_adapter+0x80/0xec [<00000000adf936cf>] kthread+0x2e8/0x374 [<0000000041bb1628>] ret_from_fork+0x10/0x20

Published: October 28, 2024; 9:15:04 PM -0400
V4.0:(not available)
V3.1: 5.5 MEDIUM
V2.0:(not available)
CVE-2024-50067

In the Linux kernel, the following vulnerability has been resolved: uprobe: avoid out-of-bounds memory access of fetching args Uprobe needs to fetch args into a percpu buffer, and then copy to ring buffer to avoid non-atomic context problem. Sometimes user-space strings, arrays can be very large, but the size of percpu buffer is only page size. And store_trace_args() won't check whether these data exceeds a single page or not, caused out-of-bounds memory access. It could be reproduced by following steps: 1. build kernel with CONFIG_KASAN enabled 2. save follow program as test.c ``` \#include <stdio.h> \#include <stdlib.h> \#include <string.h> // If string length large than MAX_STRING_SIZE, the fetch_store_strlen() // will return 0, cause __get_data_size() return shorter size, and // store_trace_args() will not trigger out-of-bounds access. // So make string length less than 4096. \#define STRLEN 4093 void generate_string(char *str, int n) { int i; for (i = 0; i < n; ++i) { char c = i % 26 + 'a'; str[i] = c; } str[n-1] = '\0'; } void print_string(char *str) { printf("%s\n", str); } int main() { char tmp[STRLEN]; generate_string(tmp, STRLEN); print_string(tmp); return 0; } ``` 3. compile program `gcc -o test test.c` 4. get the offset of `print_string()` ``` objdump -t test | grep -w print_string 0000000000401199 g F .text 000000000000001b print_string ``` 5. configure uprobe with offset 0x1199 ``` off=0x1199 cd /sys/kernel/debug/tracing/ echo "p /root/test:${off} arg1=+0(%di):ustring arg2=\$comm arg3=+0(%di):ustring" > uprobe_events echo 1 > events/uprobes/enable echo 1 > tracing_on ``` 6. run `test`, and kasan will report error. ================================================================== BUG: KASAN: use-after-free in strncpy_from_user+0x1d6/0x1f0 Write of size 8 at addr ffff88812311c004 by task test/499CPU: 0 UID: 0 PID: 499 Comm: test Not tainted 6.12.0-rc3+ #18 Hardware name: Red Hat KVM, BIOS 1.16.0-4.al8 04/01/2014 Call Trace: <TASK> dump_stack_lvl+0x55/0x70 print_address_description.constprop.0+0x27/0x310 kasan_report+0x10f/0x120 ? strncpy_from_user+0x1d6/0x1f0 strncpy_from_user+0x1d6/0x1f0 ? rmqueue.constprop.0+0x70d/0x2ad0 process_fetch_insn+0xb26/0x1470 ? __pfx_process_fetch_insn+0x10/0x10 ? _raw_spin_lock+0x85/0xe0 ? __pfx__raw_spin_lock+0x10/0x10 ? __pte_offset_map+0x1f/0x2d0 ? unwind_next_frame+0xc5f/0x1f80 ? arch_stack_walk+0x68/0xf0 ? is_bpf_text_address+0x23/0x30 ? kernel_text_address.part.0+0xbb/0xd0 ? __kernel_text_address+0x66/0xb0 ? unwind_get_return_address+0x5e/0xa0 ? __pfx_stack_trace_consume_entry+0x10/0x10 ? arch_stack_walk+0xa2/0xf0 ? _raw_spin_lock_irqsave+0x8b/0xf0 ? __pfx__raw_spin_lock_irqsave+0x10/0x10 ? depot_alloc_stack+0x4c/0x1f0 ? _raw_spin_unlock_irqrestore+0xe/0x30 ? stack_depot_save_flags+0x35d/0x4f0 ? kasan_save_stack+0x34/0x50 ? kasan_save_stack+0x24/0x50 ? mutex_lock+0x91/0xe0 ? __pfx_mutex_lock+0x10/0x10 prepare_uprobe_buffer.part.0+0x2cd/0x500 uprobe_dispatcher+0x2c3/0x6a0 ? __pfx_uprobe_dispatcher+0x10/0x10 ? __kasan_slab_alloc+0x4d/0x90 handler_chain+0xdd/0x3e0 handle_swbp+0x26e/0x3d0 ? __pfx_handle_swbp+0x10/0x10 ? uprobe_pre_sstep_notifier+0x151/0x1b0 irqentry_exit_to_user_mode+0xe2/0x1b0 asm_exc_int3+0x39/0x40 RIP: 0033:0x401199 Code: 01 c2 0f b6 45 fb 88 02 83 45 fc 01 8b 45 fc 3b 45 e4 7c b7 8b 45 e4 48 98 48 8d 50 ff 48 8b 45 e8 48 01 d0 ce RSP: 002b:00007ffdf00576a8 EFLAGS: 00000206 RAX: 00007ffdf00576b0 RBX: 0000000000000000 RCX: 0000000000000ff2 RDX: 0000000000000ffc RSI: 0000000000000ffd RDI: 00007ffdf00576b0 RBP: 00007ffdf00586b0 R08: 00007feb2f9c0d20 R09: 00007feb2f9c0d20 R10: 0000000000000001 R11: 0000000000000202 R12: 0000000000401040 R13: 00007ffdf0058780 R14: 0000000000000000 R15: 0000000000000000 </TASK> This commit enforces the buffer's maxlen less than a page-size to avoid store_trace_args() out-of-memory access.

Published: October 27, 2024; 9:15:02 PM -0400
V4.0:(not available)
V3.1: 7.8 HIGH
V2.0:(not available)
CVE-2024-50066

In the Linux kernel, the following vulnerability has been resolved: mm/mremap: fix move_normal_pmd/retract_page_tables race In mremap(), move_page_tables() looks at the type of the PMD entry and the specified address range to figure out by which method the next chunk of page table entries should be moved. At that point, the mmap_lock is held in write mode, but no rmap locks are held yet. For PMD entries that point to page tables and are fully covered by the source address range, move_pgt_entry(NORMAL_PMD, ...) is called, which first takes rmap locks, then does move_normal_pmd(). move_normal_pmd() takes the necessary page table locks at source and destination, then moves an entire page table from the source to the destination. The problem is: The rmap locks, which protect against concurrent page table removal by retract_page_tables() in the THP code, are only taken after the PMD entry has been read and it has been decided how to move it. So we can race as follows (with two processes that have mappings of the same tmpfs file that is stored on a tmpfs mount with huge=advise); note that process A accesses page tables through the MM while process B does it through the file rmap: process A process B ========= ========= mremap mremap_to move_vma move_page_tables get_old_pmd alloc_new_pmd *** PREEMPT *** madvise(MADV_COLLAPSE) do_madvise madvise_walk_vmas madvise_vma_behavior madvise_collapse hpage_collapse_scan_file collapse_file retract_page_tables i_mmap_lock_read(mapping) pmdp_collapse_flush i_mmap_unlock_read(mapping) move_pgt_entry(NORMAL_PMD, ...) take_rmap_locks move_normal_pmd drop_rmap_locks When this happens, move_normal_pmd() can end up creating bogus PMD entries in the line `pmd_populate(mm, new_pmd, pmd_pgtable(pmd))`. The effect depends on arch-specific and machine-specific details; on x86, you can end up with physical page 0 mapped as a page table, which is likely exploitable for user->kernel privilege escalation. Fix the race by letting process B recheck that the PMD still points to a page table after the rmap locks have been taken. Otherwise, we bail and let the caller fall back to the PTE-level copying path, which will then bail immediately at the pmd_none() check. Bug reachability: Reaching this bug requires that you can create shmem/file THP mappings - anonymous THP uses different code that doesn't zap stuff under rmap locks. File THP is gated on an experimental config flag (CONFIG_READ_ONLY_THP_FOR_FS), so on normal distro kernels you need shmem THP to hit this bug. As far as I know, getting shmem THP normally requires that you can mount your own tmpfs with the right mount flags, which would require creating your own user+mount namespace; though I don't know if some distros maybe enable shmem THP by default or something like that. Bug impact: This issue can likely be used for user->kernel privilege escalation when it is reachable.

Published: October 23, 2024; 2:15:10 AM -0400
V4.0:(not available)
V3.1: 7.0 HIGH
V2.0:(not available)
CVE-2024-50064

In the Linux kernel, the following vulnerability has been resolved: zram: free secondary algorithms names We need to kfree() secondary algorithms names when reset zram device that had multi-streams, otherwise we leak memory. [senozhatsky@chromium.org: kfree(NULL) is legal] Link: https://lkml.kernel.org/r/20240917013021.868769-1-senozhatsky@chromium.org

Published: October 21, 2024; 4:15:18 PM -0400
V4.0:(not available)
V3.1: 5.5 MEDIUM
V2.0:(not available)
CVE-2024-50063

In the Linux kernel, the following vulnerability has been resolved: bpf: Prevent tail call between progs attached to different hooks bpf progs can be attached to kernel functions, and the attached functions can take different parameters or return different return values. If prog attached to one kernel function tail calls prog attached to another kernel function, the ctx access or return value verification could be bypassed. For example, if prog1 is attached to func1 which takes only 1 parameter and prog2 is attached to func2 which takes two parameters. Since verifier assumes the bpf ctx passed to prog2 is constructed based on func2's prototype, verifier allows prog2 to access the second parameter from the bpf ctx passed to it. The problem is that verifier does not prevent prog1 from passing its bpf ctx to prog2 via tail call. In this case, the bpf ctx passed to prog2 is constructed from func1 instead of func2, that is, the assumption for ctx access verification is bypassed. Another example, if BPF LSM prog1 is attached to hook file_alloc_security, and BPF LSM prog2 is attached to hook bpf_lsm_audit_rule_known. Verifier knows the return value rules for these two hooks, e.g. it is legal for bpf_lsm_audit_rule_known to return positive number 1, and it is illegal for file_alloc_security to return positive number. So verifier allows prog2 to return positive number 1, but does not allow prog1 to return positive number. The problem is that verifier does not prevent prog1 from calling prog2 via tail call. In this case, prog2's return value 1 will be used as the return value for prog1's hook file_alloc_security. That is, the return value rule is bypassed. This patch adds restriction for tail call to prevent such bypasses.

Published: October 21, 2024; 4:15:18 PM -0400
V4.0:(not available)
V3.1: 7.8 HIGH
V2.0:(not available)
CVE-2024-50062

In the Linux kernel, the following vulnerability has been resolved: RDMA/rtrs-srv: Avoid null pointer deref during path establishment For RTRS path establishment, RTRS client initiates and completes con_num of connections. After establishing all its connections, the information is exchanged between the client and server through the info_req message. During this exchange, it is essential that all connections have been established, and the state of the RTRS srv path is CONNECTED. So add these sanity checks, to make sure we detect and abort process in error scenarios to avoid null pointer deref.

Published: October 21, 2024; 4:15:18 PM -0400
V4.0:(not available)
V3.1: 5.5 MEDIUM
V2.0:(not available)
CVE-2024-50061

In the Linux kernel, the following vulnerability has been resolved: i3c: master: cdns: Fix use after free vulnerability in cdns_i3c_master Driver Due to Race Condition In the cdns_i3c_master_probe function, &master->hj_work is bound with cdns_i3c_master_hj. And cdns_i3c_master_interrupt can call cnds_i3c_master_demux_ibis function to start the work. If we remove the module which will call cdns_i3c_master_remove to make cleanup, it will free master->base through i3c_master_unregister while the work mentioned above will be used. The sequence of operations that may lead to a UAF bug is as follows: CPU0 CPU1 | cdns_i3c_master_hj cdns_i3c_master_remove | i3c_master_unregister(&master->base) | device_unregister(&master->dev) | device_release | //free master->base | | i3c_master_do_daa(&master->base) | //use master->base Fix it by ensuring that the work is canceled before proceeding with the cleanup in cdns_i3c_master_remove.

Published: October 21, 2024; 4:15:18 PM -0400
V4.0:(not available)
V3.1: 7.0 HIGH
V2.0:(not available)
CVE-2024-50059

In the Linux kernel, the following vulnerability has been resolved: ntb: ntb_hw_switchtec: Fix use after free vulnerability in switchtec_ntb_remove due to race condition In the switchtec_ntb_add function, it can call switchtec_ntb_init_sndev function, then &sndev->check_link_status_work is bound with check_link_status_work. switchtec_ntb_link_notification may be called to start the work. If we remove the module which will call switchtec_ntb_remove to make cleanup, it will free sndev through kfree(sndev), while the work mentioned above will be used. The sequence of operations that may lead to a UAF bug is as follows: CPU0 CPU1 | check_link_status_work switchtec_ntb_remove | kfree(sndev); | | if (sndev->link_force_down) | // use sndev Fix it by ensuring that the work is canceled before proceeding with the cleanup in switchtec_ntb_remove.

Published: October 21, 2024; 4:15:18 PM -0400
V4.0:(not available)
V3.1: 7.0 HIGH
V2.0:(not available)
CVE-2024-50058

In the Linux kernel, the following vulnerability has been resolved: serial: protect uart_port_dtr_rts() in uart_shutdown() too Commit af224ca2df29 (serial: core: Prevent unsafe uart port access, part 3) added few uport == NULL checks. It added one to uart_shutdown(), so the commit assumes, uport can be NULL in there. But right after that protection, there is an unprotected "uart_port_dtr_rts(uport, false);" call. That is invoked only if HUPCL is set, so I assume that is the reason why we do not see lots of these reports. Or it cannot be NULL at this point at all for some reason :P. Until the above is investigated, stay on the safe side and move this dereference to the if too. I got this inconsistency from Coverity under CID 1585130. Thanks.

Published: October 21, 2024; 4:15:17 PM -0400
V4.0:(not available)
V3.1: 5.5 MEDIUM
V2.0:(not available)
CVE-2024-50057

In the Linux kernel, the following vulnerability has been resolved: usb: typec: tipd: Free IRQ only if it was requested before In polling mode, if no IRQ was requested there is no need to free it. Call devm_free_irq() only if client->irq is set. This fixes the warning caused by the tps6598x module removal: WARNING: CPU: 2 PID: 333 at kernel/irq/devres.c:144 devm_free_irq+0x80/0x8c ... ... Call trace: devm_free_irq+0x80/0x8c tps6598x_remove+0x28/0x88 [tps6598x] i2c_device_remove+0x2c/0x9c device_remove+0x4c/0x80 device_release_driver_internal+0x1cc/0x228 driver_detach+0x50/0x98 bus_remove_driver+0x6c/0xbc driver_unregister+0x30/0x60 i2c_del_driver+0x54/0x64 tps6598x_i2c_driver_exit+0x18/0xc3c [tps6598x] __arm64_sys_delete_module+0x184/0x264 invoke_syscall+0x48/0x110 el0_svc_common.constprop.0+0xc8/0xe8 do_el0_svc+0x20/0x2c el0_svc+0x28/0x98 el0t_64_sync_handler+0x13c/0x158 el0t_64_sync+0x190/0x194

Published: October 21, 2024; 4:15:17 PM -0400
V4.0:(not available)
V3.1: 3.3 LOW
V2.0:(not available)