U.S. flag   An official website of the United States government
Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Https

Secure .gov websites use HTTPS
A lock (Dot gov) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Results (Refine Search)

Search Parameters:
  • Results Type: Overview
  • Keyword (text search): cpe:2.3:o:redhat:enterprise_linux:8.0:*:*:*:advanced_virtualization:*:*:*
  • CPE Name Search: true
There are 858 matching records.
Displaying matches 561 through 580.
Vuln ID Summary CVSS Severity
CVE-2020-1726

A flaw was discovered in Podman where it incorrectly allows containers when created to overwrite existing files in volumes, even if they are mounted as read-only. When a user runs a malicious container or a container based on a malicious image with an attached volume that is used for the first time, it is possible to trigger the flaw and overwrite files in the volume.This issue was introduced in version 1.6.0.

Published: February 11, 2020; 3:15:12 PM -0500
V4.0:(not available)
V3.1: 5.9 MEDIUM
V2.0: 5.8 MEDIUM
CVE-2020-1711

An out-of-bounds heap buffer access flaw was found in the way the iSCSI Block driver in QEMU versions 2.12.0 before 4.2.1 handled a response coming from an iSCSI server while checking the status of a Logical Address Block (LBA) in an iscsi_co_block_status() routine. A remote user could use this flaw to crash the QEMU process, resulting in a denial of service or potential execution of arbitrary code with privileges of the QEMU process on the host.

Published: February 11, 2020; 3:15:11 PM -0500
V4.0:(not available)
V3.1: 6.0 MEDIUM
V2.0: 6.0 MEDIUM
CVE-2019-15606

Including trailing white space in HTTP header values in Nodejs 10, 12, and 13 causes bypass of authorization based on header value comparisons

Published: February 07, 2020; 10:15:11 AM -0500
V4.0:(not available)
V3.1: 9.8 CRITICAL
V2.0: 7.5 HIGH
CVE-2019-15605

HTTP request smuggling in Node.js 10, 12, and 13 causes malicious payload delivery when transfer-encoding is malformed

Published: February 07, 2020; 10:15:11 AM -0500
V4.0:(not available)
V3.1: 9.8 CRITICAL
V2.0: 7.5 HIGH
CVE-2019-20445

HttpObjectDecoder.java in Netty before 4.1.44 allows a Content-Length header to be accompanied by a second Content-Length header, or by a Transfer-Encoding header.

Published: January 29, 2020; 4:15:11 PM -0500
V4.0:(not available)
V3.1: 9.1 CRITICAL
V2.0: 6.4 MEDIUM
CVE-2019-20444

HttpObjectDecoder.java in Netty before 4.1.44 allows an HTTP header that lacks a colon, which might be interpreted as a separate header with an incorrect syntax, or might be interpreted as an "invalid fold."

Published: January 29, 2020; 4:15:11 PM -0500
V4.0:(not available)
V3.1: 9.1 CRITICAL
V2.0: 6.4 MEDIUM
CVE-2019-14907

All samba versions 4.9.x before 4.9.18, 4.10.x before 4.10.12 and 4.11.x before 4.11.5 have an issue where if it is set with "log level = 3" (or above) then the string obtained from the client, after a failed character conversion, is printed. Such strings can be provided during the NTLMSSP authentication exchange. In the Samba AD DC in particular, this may cause a long-lived process(such as the RPC server) to terminate. (In the file server case, the most likely target, smbd, operates as process-per-client and so a crash there is harmless).

Published: January 21, 2020; 1:15:12 PM -0500
V4.0:(not available)
V3.1: 6.5 MEDIUM
V2.0: 2.6 LOW
CVE-2019-19339

It was found that the Red Hat Enterprise Linux 8 kpatch update did not include the complete fix for CVE-2018-12207. A flaw was found in the way Intel CPUs handle inconsistency between, virtual to physical memory address translations in CPU's local cache and system software's Paging structure entries. A privileged guest user may use this flaw to induce a hardware Machine Check Error on the host processor, resulting in a severe DoS scenario by halting the processor. System software like OS OR Virtual Machine Monitor (VMM) use virtual memory system for storing program instructions and data in memory. Virtual Memory system uses Paging structures like Page Tables and Page Directories to manage system memory. The processor's Memory Management Unit (MMU) uses Paging structure entries to translate program's virtual memory addresses to physical memory addresses. The processor stores these address translations into its local cache buffer called - Translation Lookaside Buffer (TLB). TLB has two parts, one for instructions and other for data addresses. System software can modify its Paging structure entries to change address mappings OR certain attributes like page size etc. Upon such Paging structure alterations in memory, system software must invalidate the corresponding address translations in the processor's TLB cache. But before this TLB invalidation takes place, a privileged guest user may trigger an instruction fetch operation, which could use an already cached, but now invalid, virtual to physical address translation from Instruction TLB (ITLB). Thus accessing an invalid physical memory address and resulting in halting the processor due to the Machine Check Error (MCE) on Page Size Change.

Published: January 17, 2020; 2:15:12 PM -0500
V4.0:(not available)
V3.1: 6.5 MEDIUM
V2.0: 4.9 MEDIUM
CVE-2020-2659

Vulnerability in the Java SE, Java SE Embedded product of Oracle Java SE (component: Networking). Supported versions that are affected are Java SE: 7u241 and 8u231; Java SE Embedded: 8u231. Difficult to exploit vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise Java SE, Java SE Embedded. Successful attacks of this vulnerability can result in unauthorized ability to cause a partial denial of service (partial DOS) of Java SE, Java SE Embedded. Note: This vulnerability applies to Java deployments, typically in clients running sandboxed Java Web Start applications or sandboxed Java applets (in Java SE 8), that load and run untrusted code (e.g., code that comes from the internet) and rely on the Java sandbox for security. This vulnerability can also be exploited by using APIs in the specified Component, e.g., through a web service which supplies data to the APIs. CVSS 3.0 Base Score 3.7 (Availability impacts). CVSS Vector: (CVSS:3.0/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:L).

Published: January 15, 2020; 12:15:24 PM -0500
V4.0:(not available)
V3.1: 3.7 LOW
V2.0: 4.3 MEDIUM
CVE-2020-2655

Vulnerability in the Java SE product of Oracle Java SE (component: JSSE). Supported versions that are affected are Java SE: 11.0.5 and 13.0.1. Difficult to exploit vulnerability allows unauthenticated attacker with network access via HTTPS to compromise Java SE. Successful attacks of this vulnerability can result in unauthorized update, insert or delete access to some of Java SE accessible data as well as unauthorized read access to a subset of Java SE accessible data. Note: This vulnerability applies to Java deployments, typically in clients running sandboxed Java Web Start applications or sandboxed Java applets (in Java SE 8), that load and run untrusted code (e.g., code that comes from the internet) and rely on the Java sandbox for security. This vulnerability can also be exploited by using APIs in the specified Component, e.g., through a web service which supplies data to the APIs. CVSS 3.0 Base Score 4.8 (Confidentiality and Integrity impacts). CVSS Vector: (CVSS:3.0/AV:N/AC:H/PR:N/UI:N/S:U/C:L/I:L/A:N).

Published: January 15, 2020; 12:15:24 PM -0500
V4.0:(not available)
V3.1: 4.8 MEDIUM
V2.0: 5.8 MEDIUM
CVE-2020-2654

Vulnerability in the Java SE product of Oracle Java SE (component: Libraries). Supported versions that are affected are Java SE: 7u241, 8u231, 11.0.5 and 13.0.1. Difficult to exploit vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise Java SE. Successful attacks of this vulnerability can result in unauthorized ability to cause a partial denial of service (partial DOS) of Java SE. Note: This vulnerability can only be exploited by supplying data to APIs in the specified Component without using Untrusted Java Web Start applications or Untrusted Java applets, such as through a web service. CVSS 3.0 Base Score 3.7 (Availability impacts). CVSS Vector: (CVSS:3.0/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:L).

Published: January 15, 2020; 12:15:24 PM -0500
V4.0:(not available)
V3.1: 3.7 LOW
V2.0: 4.3 MEDIUM
CVE-2020-2604

Vulnerability in the Java SE, Java SE Embedded product of Oracle Java SE (component: Serialization). Supported versions that are affected are Java SE: 7u241, 8u231, 11.0.5 and 13.0.1; Java SE Embedded: 8u231. Difficult to exploit vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise Java SE, Java SE Embedded. Successful attacks of this vulnerability can result in takeover of Java SE, Java SE Embedded. Note: This vulnerability applies to Java deployments, typically in clients running sandboxed Java Web Start applications or sandboxed Java applets (in Java SE 8), that load and run untrusted code (e.g., code that comes from the internet) and rely on the Java sandbox for security. This vulnerability can also be exploited by using APIs in the specified Component, e.g., through a web service which supplies data to the APIs. CVSS v3.0 Base Score 8.1 (Confidentiality, Integrity and Availability impacts). CVSS Vector: (CVSS:3.0/AV:N/AC:H/PR:N/UI:N/S:U/C:H/I:H/A:H).

Published: January 15, 2020; 12:15:20 PM -0500
V4.0:(not available)
V3.1: 8.1 HIGH
V2.0: 6.8 MEDIUM
CVE-2020-2601

Vulnerability in the Java SE, Java SE Embedded product of Oracle Java SE (component: Security). Supported versions that are affected are Java SE: 7u241, 8u231, 11.0.5 and 13.0.1; Java SE Embedded: 8u231. Difficult to exploit vulnerability allows unauthenticated attacker with network access via Kerberos to compromise Java SE, Java SE Embedded. While the vulnerability is in Java SE, Java SE Embedded, attacks may significantly impact additional products. Successful attacks of this vulnerability can result in unauthorized access to critical data or complete access to all Java SE, Java SE Embedded accessible data. Note: This vulnerability applies to Java deployments, typically in clients running sandboxed Java Web Start applications or sandboxed Java applets (in Java SE 8), that load and run untrusted code (e.g., code that comes from the internet) and rely on the Java sandbox for security. This vulnerability can also be exploited by using APIs in the specified Component, e.g., through a web service which supplies data to the APIs. CVSS 3.0 Base Score 6.8 (Confidentiality impacts). CVSS Vector: (CVSS:3.0/AV:N/AC:H/PR:N/UI:N/S:C/C:H/I:N/A:N).

Published: January 15, 2020; 12:15:20 PM -0500
V4.0:(not available)
V3.1: 6.8 MEDIUM
V2.0: 4.3 MEDIUM
CVE-2020-2593

Vulnerability in the Java SE, Java SE Embedded product of Oracle Java SE (component: Networking). Supported versions that are affected are Java SE: 7u241, 8u231, 11.0.5 and 13.0.1; Java SE Embedded: 8u231. Difficult to exploit vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise Java SE, Java SE Embedded. Successful attacks of this vulnerability can result in unauthorized update, insert or delete access to some of Java SE, Java SE Embedded accessible data as well as unauthorized read access to a subset of Java SE, Java SE Embedded accessible data. Note: This vulnerability applies to Java deployments, typically in clients running sandboxed Java Web Start applications or sandboxed Java applets (in Java SE 8), that load and run untrusted code (e.g., code that comes from the internet) and rely on the Java sandbox for security. This vulnerability can also be exploited by using APIs in the specified Component, e.g., through a web service which supplies data to the APIs. CVSS 3.0 Base Score 4.8 (Confidentiality and Integrity impacts). CVSS Vector: (CVSS:3.0/AV:N/AC:H/PR:N/UI:N/S:U/C:L/I:L/A:N).

Published: January 15, 2020; 12:15:19 PM -0500
V4.0:(not available)
V3.1: 4.8 MEDIUM
V2.0: 5.8 MEDIUM
CVE-2020-2590

Vulnerability in the Java SE, Java SE Embedded product of Oracle Java SE (component: Security). Supported versions that are affected are Java SE: 7u241, 8u231, 11.0.5 and 13.0.1; Java SE Embedded: 8u231. Difficult to exploit vulnerability allows unauthenticated attacker with network access via Kerberos to compromise Java SE, Java SE Embedded. Successful attacks of this vulnerability can result in unauthorized update, insert or delete access to some of Java SE, Java SE Embedded accessible data. Note: This vulnerability applies to Java deployments, typically in clients running sandboxed Java Web Start applications or sandboxed Java applets (in Java SE 8), that load and run untrusted code (e.g., code that comes from the internet) and rely on the Java sandbox for security. This vulnerability can also be exploited by using APIs in the specified Component, e.g., through a web service which supplies data to the APIs. CVSS 3.0 Base Score 3.7 (Integrity impacts). CVSS Vector: (CVSS:3.0/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:L/A:N).

Published: January 15, 2020; 12:15:19 PM -0500
V4.0:(not available)
V3.1: 3.7 LOW
V2.0: 4.3 MEDIUM
CVE-2020-2583

Vulnerability in the Java SE, Java SE Embedded product of Oracle Java SE (component: Serialization). Supported versions that are affected are Java SE: 7u241, 8u231, 11.0.5 and 13.0.1; Java SE Embedded: 8u231. Difficult to exploit vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise Java SE, Java SE Embedded. Successful attacks of this vulnerability can result in unauthorized ability to cause a partial denial of service (partial DOS) of Java SE, Java SE Embedded. Note: This vulnerability applies to Java deployments, typically in clients running sandboxed Java Web Start applications or sandboxed Java applets (in Java SE 8), that load and run untrusted code (e.g., code that comes from the internet) and rely on the Java sandbox for security. This vulnerability can also be exploited by using APIs in the specified Component, e.g., through a web service which supplies data to the APIs. CVSS 3.0 Base Score 3.7 (Availability impacts). CVSS Vector: (CVSS:3.0/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:L).

Published: January 15, 2020; 12:15:19 PM -0500
V4.0:(not available)
V3.1: 3.7 LOW
V2.0: 4.3 MEDIUM
CVE-2020-0603

A remote code execution vulnerability exists in ASP.NET Core software when the software fails to handle objects in memory.An attacker who successfully exploited the vulnerability could run arbitrary code in the context of the current user, aka 'ASP.NET Core Remote Code Execution Vulnerability'.

Published: January 14, 2020; 6:15:30 PM -0500
V4.0:(not available)
V3.1: 8.8 HIGH
V2.0: 9.3 HIGH
CVE-2020-0602

A denial of service vulnerability exists when ASP.NET Core improperly handles web requests, aka 'ASP.NET Core Denial of Service Vulnerability'.

Published: January 14, 2020; 6:15:30 PM -0500
V4.0:(not available)
V3.1: 7.5 HIGH
V2.0: 5.0 MEDIUM
CVE-2020-6851

OpenJPEG through 2.3.1 has a heap-based buffer overflow in opj_t1_clbl_decode_processor in openjp2/t1.c because of lack of opj_j2k_update_image_dimensions validation.

Published: January 13, 2020; 1:15:10 AM -0500
V4.0:(not available)
V3.1: 7.5 HIGH
V2.0: 5.0 MEDIUM
CVE-2019-19332

An out-of-bounds memory write issue was found in the Linux Kernel, version 3.13 through 5.4, in the way the Linux kernel's KVM hypervisor handled the 'KVM_GET_EMULATED_CPUID' ioctl(2) request to get CPUID features emulated by the KVM hypervisor. A user or process able to access the '/dev/kvm' device could use this flaw to crash the system, resulting in a denial of service.

Published: January 09, 2020; 10:15:10 AM -0500
V4.0:(not available)
V3.1: 6.1 MEDIUM
V2.0: 5.6 MEDIUM