U.S. flag   An official website of the United States government
Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Https

Secure .gov websites use HTTPS
A lock (Dot gov) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Results (Refine Search)

Search Parameters:
  • Keyword (text search): Unbound
  • Search Type: Search All
There are 124 matching records.
Displaying matches 61 through 80.
Vuln ID Summary CVSS Severity
CVE-2019-25037

Unbound before 1.9.5 allows an assertion failure and denial of service in dname_pkt_copy via an invalid packet. NOTE: The vendor disputes that this is a vulnerability. Although the code may be vulnerable, a running Unbound installation cannot be remotely or locally exploited

Published: April 27, 2021; 2:15:07 AM -0400
V3.1: 7.5 HIGH
V2.0: 5.0 MEDIUM
CVE-2019-25036

Unbound before 1.9.5 allows an assertion failure and denial of service in synth_cname. NOTE: The vendor disputes that this is a vulnerability. Although the code may be vulnerable, a running Unbound installation cannot be remotely or locally exploited

Published: April 27, 2021; 2:15:07 AM -0400
V3.1: 7.5 HIGH
V2.0: 5.0 MEDIUM
CVE-2019-25035

Unbound before 1.9.5 allows an out-of-bounds write in sldns_bget_token_par. NOTE: The vendor disputes that this is a vulnerability. Although the code may be vulnerable, a running Unbound installation cannot be remotely or locally exploited

Published: April 27, 2021; 2:15:07 AM -0400
V3.1: 9.8 CRITICAL
V2.0: 7.5 HIGH
CVE-2019-25034

Unbound before 1.9.5 allows an integer overflow in sldns_str2wire_dname_buf_origin, leading to an out-of-bounds write. NOTE: The vendor disputes that this is a vulnerability. Although the code may be vulnerable, a running Unbound installation cannot be remotely or locally exploited

Published: April 27, 2021; 2:15:07 AM -0400
V3.1: 9.8 CRITICAL
V2.0: 7.5 HIGH
CVE-2019-25033

Unbound before 1.9.5 allows an integer overflow in the regional allocator via the ALIGN_UP macro. NOTE: The vendor disputes that this is a vulnerability. Although the code may be vulnerable, a running Unbound installation cannot be remotely or locally exploited

Published: April 27, 2021; 2:15:07 AM -0400
V3.1: 9.8 CRITICAL
V2.0: 7.5 HIGH
CVE-2019-25032

Unbound before 1.9.5 allows an integer overflow in the regional allocator via regional_alloc. NOTE: The vendor disputes that this is a vulnerability. Although the code may be vulnerable, a running Unbound installation cannot be remotely or locally exploited

Published: April 27, 2021; 2:15:07 AM -0400
V3.1: 9.8 CRITICAL
V2.0: 7.5 HIGH
CVE-2019-25031

Unbound before 1.9.5 allows configuration injection in create_unbound_ad_servers.sh upon a successful man-in-the-middle attack against a cleartext HTTP session. NOTE: The vendor does not consider this a vulnerability of the Unbound software. create_unbound_ad_servers.sh is a contributed script from the community that facilitates automatic configuration creation. It is not part of the Unbound installation

Published: April 27, 2021; 2:15:07 AM -0400
V3.1: 5.9 MEDIUM
V2.0: 4.3 MEDIUM
CVE-2021-21294

Http4s (http4s-blaze-server) is a minimal, idiomatic Scala interface for HTTP services. Http4s before versions 0.21.17, 0.22.0-M2, and 1.0.0-M14 have a vulnerability which can lead to a denial-of-service. Blaze-core, a library underlying http4s-blaze-server, accepts connections unboundedly on its selector pool. This has the net effect of amplifying degradation in services that are unable to handle their current request load, since incoming connections are still accepted and added to an unbounded queue. Each connection allocates a socket handle, which drains a scarce OS resource. This can also confound higher level circuit breakers which work based on detecting failed connections. http4s provides a general "MaxActiveRequests" middleware mechanism for limiting open connections, but it is enforced inside the Blaze accept loop, after the connection is accepted and the socket opened. Thus, the limit only prevents the number of connections which can be simultaneously processed, not the number of connections which can be held open. In 0.21.17, 0.22.0-M2, and 1.0.0-M14, a new "maxConnections" property, with a default value of 1024, has been added to the `BlazeServerBuilder`. Setting the value to a negative number restores unbounded behavior, but is strongly disrecommended. The NIO2 backend does not respect `maxConnections`. Its use is now deprecated in http4s-0.21, and the option is removed altogether starting in http4s-0.22. There are several possible workarounds described in the refrenced GitHub Advisory GHSA-xhv5-w9c5-2r2w.

Published: February 02, 2021; 5:15:12 PM -0500
V3.1: 7.5 HIGH
V2.0: 5.0 MEDIUM
CVE-2021-21293

blaze is a Scala library for building asynchronous pipelines, with a focus on network IO. All servers running blaze-core before version 0.14.15 are affected by a vulnerability in which unbounded connection acceptance leads to file handle exhaustion. Blaze, accepts connections unconditionally on a dedicated thread pool. This has the net effect of amplifying degradation in services that are unable to handle their current request load, since incoming connections are still accepted and added to an unbounded queue. Each connection allocates a socket handle, which drains a scarce OS resource. This can also confound higher level circuit breakers which work based on detecting failed connections. The vast majority of affected users are using it as part of http4s-blaze-server <= 0.21.16. http4s provides a mechanism for limiting open connections, but is enforced inside the Blaze accept loop, after the connection is accepted and the socket opened. Thus, the limit only prevents the number of connections which can be simultaneously processed, not the number of connections which can be held open. The issue is fixed in version 0.14.15 for "NIO1SocketServerGroup". A "maxConnections" parameter is added, with a default value of 512. Concurrent connections beyond this limit are rejected. To run unbounded, which is not recommended, set a negative number. The "NIO2SocketServerGroup" has no such setting and is now deprecated. There are several possible workarounds described in the refrenced GitHub Advisory GHSA-xmw9-q7x9-j5qc.

Published: February 02, 2021; 5:15:12 PM -0500
V3.1: 7.5 HIGH
V2.0: 5.0 MEDIUM
CVE-2020-29486

An issue was discovered in Xen through 4.14.x. Nodes in xenstore have an ownership. In oxenstored, a owner could give a node away. However, node ownership has quota implications. Any guest can run another guest out of quota, or create an unbounded number of nodes owned by dom0, thus running xenstored out of memory A malicious guest administrator can cause a denial of service against a specific guest or against the whole host. All systems using oxenstored are vulnerable. Building and using oxenstored is the default in the upstream Xen distribution, if the Ocaml compiler is available. Systems using C xenstored are not vulnerable.

Published: December 15, 2020; 1:15:15 PM -0500
V3.1: 6.0 MEDIUM
V2.0: 4.9 MEDIUM
CVE-2020-29485

An issue was discovered in Xen 4.6 through 4.14.x. When acting upon a guest XS_RESET_WATCHES request, not all tracking information is freed. A guest can cause unbounded memory usage in oxenstored. This can lead to a system-wide DoS. Only systems using the Ocaml Xenstored implementation are vulnerable. Systems using the C Xenstored implementation are not vulnerable.

Published: December 15, 2020; 1:15:15 PM -0500
V3.1: 5.5 MEDIUM
V2.0: 4.9 MEDIUM
CVE-2020-29568

An issue was discovered in Xen through 4.14.x. Some OSes (such as Linux, FreeBSD, and NetBSD) are processing watch events using a single thread. If the events are received faster than the thread is able to handle, they will get queued. As the queue is unbounded, a guest may be able to trigger an OOM in the backend. All systems with a FreeBSD, Linux, or NetBSD (any version) dom0 are vulnerable.

Published: December 15, 2020; 12:15:14 PM -0500
V3.1: 6.5 MEDIUM
V2.0: 4.9 MEDIUM
CVE-2020-28935

NLnet Labs Unbound, up to and including version 1.12.0, and NLnet Labs NSD, up to and including version 4.3.3, contain a local vulnerability that would allow for a local symlink attack. When writing the PID file, Unbound and NSD create the file if it is not there, or open an existing file for writing. In case the file was already present, they would follow symlinks if the file happened to be a symlink instead of a regular file. An additional chown of the file would then take place after it was written, making the user Unbound/NSD is supposed to run as the new owner of the file. If an attacker has local access to the user Unbound/NSD runs as, she could create a symlink in place of the PID file pointing to a file that she would like to erase. If then Unbound/NSD is killed and the PID file is not cleared, upon restarting with root privileges, Unbound/NSD will rewrite any file pointed at by the symlink. This is a local vulnerability that could create a Denial of Service of the system Unbound/NSD is running on. It requires an attacker having access to the limited permission user Unbound/NSD runs as and point through the symlink to a critical file on the system.

Published: December 07, 2020; 5:15:20 PM -0500
V3.1: 5.5 MEDIUM
V2.0: 2.1 LOW
CVE-2020-10772

An incomplete fix for CVE-2020-12662 was shipped for Unbound in Red Hat Enterprise Linux 7, as part of erratum RHSA-2020:2414. Vulnerable versions of Unbound could still amplify an incoming query into a large number of queries directed to a target, even with a lower amplification ratio compared to versions of Unbound that shipped before the mentioned erratum. This issue is about the incomplete fix for CVE-2020-12662, and it does not affect upstream versions of Unbound.

Published: November 27, 2020; 1:15:11 PM -0500
V3.1: 7.5 HIGH
V2.0: 5.0 MEDIUM
CVE-2020-16127

An Ubuntu-specific modification to AccountsService in versions before 0.6.55-0ubuntu13.2, among other earlier versions, would perform unbounded read operations on user-controlled ~/.pam_environment files, allowing an infinite loop if /dev/zero is symlinked to this location.

Published: November 10, 2020; 11:15:12 PM -0500
V3.1: 5.5 MEDIUM
V2.0: 2.1 LOW
CVE-2020-26883

In Play Framework 2.6.0 through 2.8.2, stack consumption can occur because of unbounded recursion during parsing of crafted JSON documents.

Published: November 06, 2020; 9:15:16 AM -0500
V3.1: 7.5 HIGH
V2.0: 5.0 MEDIUM
CVE-2020-28196

MIT Kerberos 5 (aka krb5) before 1.17.2 and 1.18.x before 1.18.3 allows unbounded recursion via an ASN.1-encoded Kerberos message because the lib/krb5/asn.1/asn1_encode.c support for BER indefinite lengths lacks a recursion limit.

Published: November 06, 2020; 3:15:13 AM -0500
V3.1: 7.5 HIGH
V2.0: 5.0 MEDIUM
CVE-2020-25601

An issue was discovered in Xen through 4.14.x. There is a lack of preemption in evtchn_reset() / evtchn_destroy(). In particular, the FIFO event channel model allows guests to have a large number of event channels active at a time. Closing all of these (when resetting all event channels or when cleaning up after the guest) may take extended periods of time. So far, there was no arrangement for preemption at suitable intervals, allowing a CPU to spend an almost unbounded amount of time in the processing of these operations. Malicious or buggy guest kernels can mount a Denial of Service (DoS) attack affecting the entire system. All Xen versions are vulnerable in principle. Whether versions 4.3 and older are vulnerable depends on underlying hardware characteristics.

Published: September 23, 2020; 6:15:13 PM -0400
V3.1: 5.5 MEDIUM
V2.0: 4.9 MEDIUM
CVE-2020-0223

This is an unbounded write into kernel global memory, via a user-controlled buffer size.Product: AndroidVersions: Android kernelAndroid ID: A-135130450

Published: June 16, 2020; 10:15:10 AM -0400
V3.1: 9.8 CRITICAL
V2.0: 7.5 HIGH
CVE-2020-12663

Unbound before 1.10.1 has an infinite loop via malformed DNS answers received from upstream servers.

Published: May 19, 2020; 10:15:11 AM -0400
V3.1: 7.5 HIGH
V2.0: 5.0 MEDIUM