U.S. flag   An official website of the United States government
Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Https

Secure .gov websites use HTTPS
A lock (Dot gov) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Results (Refine Search)

Search Parameters:
  • Results Type: Overview
  • Search Type: Search Last 3 Months
There are 14,306 matching records.
Displaying matches 7,301 through 7,320.
Vuln ID Summary CVSS Severity
CVE-2024-35897

In the Linux kernel, the following vulnerability has been resolved: netfilter: nf_tables: discard table flag update with pending basechain deletion Hook unregistration is deferred to the commit phase, same occurs with hook updates triggered by the table dormant flag. When both commands are combined, this results in deleting a basechain while leaving its hook still registered in the core.

Published: May 19, 2024; 5:15:10 AM -0400
V4.0:(not available)
V3.x:(not available)
V2.0:(not available)
CVE-2024-35896

In the Linux kernel, the following vulnerability has been resolved: netfilter: validate user input for expected length I got multiple syzbot reports showing old bugs exposed by BPF after commit 20f2505fb436 ("bpf: Try to avoid kzalloc in cgroup/{s,g}etsockopt") setsockopt() @optlen argument should be taken into account before copying data. BUG: KASAN: slab-out-of-bounds in copy_from_sockptr_offset include/linux/sockptr.h:49 [inline] BUG: KASAN: slab-out-of-bounds in copy_from_sockptr include/linux/sockptr.h:55 [inline] BUG: KASAN: slab-out-of-bounds in do_replace net/ipv4/netfilter/ip_tables.c:1111 [inline] BUG: KASAN: slab-out-of-bounds in do_ipt_set_ctl+0x902/0x3dd0 net/ipv4/netfilter/ip_tables.c:1627 Read of size 96 at addr ffff88802cd73da0 by task syz-executor.4/7238 CPU: 1 PID: 7238 Comm: syz-executor.4 Not tainted 6.9.0-rc2-next-20240403-syzkaller #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 03/27/2024 Call Trace: <TASK> __dump_stack lib/dump_stack.c:88 [inline] dump_stack_lvl+0x241/0x360 lib/dump_stack.c:114 print_address_description mm/kasan/report.c:377 [inline] print_report+0x169/0x550 mm/kasan/report.c:488 kasan_report+0x143/0x180 mm/kasan/report.c:601 kasan_check_range+0x282/0x290 mm/kasan/generic.c:189 __asan_memcpy+0x29/0x70 mm/kasan/shadow.c:105 copy_from_sockptr_offset include/linux/sockptr.h:49 [inline] copy_from_sockptr include/linux/sockptr.h:55 [inline] do_replace net/ipv4/netfilter/ip_tables.c:1111 [inline] do_ipt_set_ctl+0x902/0x3dd0 net/ipv4/netfilter/ip_tables.c:1627 nf_setsockopt+0x295/0x2c0 net/netfilter/nf_sockopt.c:101 do_sock_setsockopt+0x3af/0x720 net/socket.c:2311 __sys_setsockopt+0x1ae/0x250 net/socket.c:2334 __do_sys_setsockopt net/socket.c:2343 [inline] __se_sys_setsockopt net/socket.c:2340 [inline] __x64_sys_setsockopt+0xb5/0xd0 net/socket.c:2340 do_syscall_64+0xfb/0x240 entry_SYSCALL_64_after_hwframe+0x72/0x7a RIP: 0033:0x7fd22067dde9 Code: 28 00 00 00 75 05 48 83 c4 28 c3 e8 e1 20 00 00 90 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 c7 c1 b0 ff ff ff f7 d8 64 89 01 48 RSP: 002b:00007fd21f9ff0c8 EFLAGS: 00000246 ORIG_RAX: 0000000000000036 RAX: ffffffffffffffda RBX: 00007fd2207abf80 RCX: 00007fd22067dde9 RDX: 0000000000000040 RSI: 0000000000000000 RDI: 0000000000000003 RBP: 00007fd2206ca47a R08: 0000000000000001 R09: 0000000000000000 R10: 0000000020000880 R11: 0000000000000246 R12: 0000000000000000 R13: 000000000000000b R14: 00007fd2207abf80 R15: 00007ffd2d0170d8 </TASK> Allocated by task 7238: kasan_save_stack mm/kasan/common.c:47 [inline] kasan_save_track+0x3f/0x80 mm/kasan/common.c:68 poison_kmalloc_redzone mm/kasan/common.c:370 [inline] __kasan_kmalloc+0x98/0xb0 mm/kasan/common.c:387 kasan_kmalloc include/linux/kasan.h:211 [inline] __do_kmalloc_node mm/slub.c:4069 [inline] __kmalloc_noprof+0x200/0x410 mm/slub.c:4082 kmalloc_noprof include/linux/slab.h:664 [inline] __cgroup_bpf_run_filter_setsockopt+0xd47/0x1050 kernel/bpf/cgroup.c:1869 do_sock_setsockopt+0x6b4/0x720 net/socket.c:2293 __sys_setsockopt+0x1ae/0x250 net/socket.c:2334 __do_sys_setsockopt net/socket.c:2343 [inline] __se_sys_setsockopt net/socket.c:2340 [inline] __x64_sys_setsockopt+0xb5/0xd0 net/socket.c:2340 do_syscall_64+0xfb/0x240 entry_SYSCALL_64_after_hwframe+0x72/0x7a The buggy address belongs to the object at ffff88802cd73da0 which belongs to the cache kmalloc-8 of size 8 The buggy address is located 0 bytes inside of allocated 1-byte region [ffff88802cd73da0, ffff88802cd73da1) The buggy address belongs to the physical page: page: refcount:1 mapcount:0 mapping:0000000000000000 index:0xffff88802cd73020 pfn:0x2cd73 flags: 0xfff80000000000(node=0|zone=1|lastcpupid=0xfff) page_type: 0xffffefff(slab) raw: 00fff80000000000 ffff888015041280 dead000000000100 dead000000000122 raw: ffff88802cd73020 000000008080007f 00000001ffffefff 00 ---truncated---

Published: May 19, 2024; 5:15:10 AM -0400
V4.0:(not available)
V3.x:(not available)
V2.0:(not available)
CVE-2024-35895

In the Linux kernel, the following vulnerability has been resolved: bpf, sockmap: Prevent lock inversion deadlock in map delete elem syzkaller started using corpuses where a BPF tracing program deletes elements from a sockmap/sockhash map. Because BPF tracing programs can be invoked from any interrupt context, locks taken during a map_delete_elem operation must be hardirq-safe. Otherwise a deadlock due to lock inversion is possible, as reported by lockdep: CPU0 CPU1 ---- ---- lock(&htab->buckets[i].lock); local_irq_disable(); lock(&host->lock); lock(&htab->buckets[i].lock); <Interrupt> lock(&host->lock); Locks in sockmap are hardirq-unsafe by design. We expects elements to be deleted from sockmap/sockhash only in task (normal) context with interrupts enabled, or in softirq context. Detect when map_delete_elem operation is invoked from a context which is _not_ hardirq-unsafe, that is interrupts are disabled, and bail out with an error. Note that map updates are not affected by this issue. BPF verifier does not allow updating sockmap/sockhash from a BPF tracing program today.

Published: May 19, 2024; 5:15:10 AM -0400
V4.0:(not available)
V3.x:(not available)
V2.0:(not available)
CVE-2024-35894

In the Linux kernel, the following vulnerability has been resolved: mptcp: prevent BPF accessing lowat from a subflow socket. Alexei reported the following splat: WARNING: CPU: 32 PID: 3276 at net/mptcp/subflow.c:1430 subflow_data_ready+0x147/0x1c0 Modules linked in: dummy bpf_testmod(O) [last unloaded: bpf_test_no_cfi(O)] CPU: 32 PID: 3276 Comm: test_progs Tainted: GO 6.8.0-12873-g2c43c33bfd23 Call Trace: <TASK> mptcp_set_rcvlowat+0x79/0x1d0 sk_setsockopt+0x6c0/0x1540 __bpf_setsockopt+0x6f/0x90 bpf_sock_ops_setsockopt+0x3c/0x90 bpf_prog_509ce5db2c7f9981_bpf_test_sockopt_int+0xb4/0x11b bpf_prog_dce07e362d941d2b_bpf_test_socket_sockopt+0x12b/0x132 bpf_prog_348c9b5faaf10092_skops_sockopt+0x954/0xe86 __cgroup_bpf_run_filter_sock_ops+0xbc/0x250 tcp_connect+0x879/0x1160 tcp_v6_connect+0x50c/0x870 mptcp_connect+0x129/0x280 __inet_stream_connect+0xce/0x370 inet_stream_connect+0x36/0x50 bpf_trampoline_6442491565+0x49/0xef inet_stream_connect+0x5/0x50 __sys_connect+0x63/0x90 __x64_sys_connect+0x14/0x20 The root cause of the issue is that bpf allows accessing mptcp-level proto_ops from a tcp subflow scope. Fix the issue detecting the problematic call and preventing any action.

Published: May 19, 2024; 5:15:10 AM -0400
V4.0:(not available)
V3.x:(not available)
V2.0:(not available)
CVE-2024-35893

In the Linux kernel, the following vulnerability has been resolved: net/sched: act_skbmod: prevent kernel-infoleak syzbot found that tcf_skbmod_dump() was copying four bytes from kernel stack to user space [1]. The issue here is that 'struct tc_skbmod' has a four bytes hole. We need to clear the structure before filling fields. [1] BUG: KMSAN: kernel-infoleak in instrument_copy_to_user include/linux/instrumented.h:114 [inline] BUG: KMSAN: kernel-infoleak in copy_to_user_iter lib/iov_iter.c:24 [inline] BUG: KMSAN: kernel-infoleak in iterate_ubuf include/linux/iov_iter.h:29 [inline] BUG: KMSAN: kernel-infoleak in iterate_and_advance2 include/linux/iov_iter.h:245 [inline] BUG: KMSAN: kernel-infoleak in iterate_and_advance include/linux/iov_iter.h:271 [inline] BUG: KMSAN: kernel-infoleak in _copy_to_iter+0x366/0x2520 lib/iov_iter.c:185 instrument_copy_to_user include/linux/instrumented.h:114 [inline] copy_to_user_iter lib/iov_iter.c:24 [inline] iterate_ubuf include/linux/iov_iter.h:29 [inline] iterate_and_advance2 include/linux/iov_iter.h:245 [inline] iterate_and_advance include/linux/iov_iter.h:271 [inline] _copy_to_iter+0x366/0x2520 lib/iov_iter.c:185 copy_to_iter include/linux/uio.h:196 [inline] simple_copy_to_iter net/core/datagram.c:532 [inline] __skb_datagram_iter+0x185/0x1000 net/core/datagram.c:420 skb_copy_datagram_iter+0x5c/0x200 net/core/datagram.c:546 skb_copy_datagram_msg include/linux/skbuff.h:4050 [inline] netlink_recvmsg+0x432/0x1610 net/netlink/af_netlink.c:1962 sock_recvmsg_nosec net/socket.c:1046 [inline] sock_recvmsg+0x2c4/0x340 net/socket.c:1068 __sys_recvfrom+0x35a/0x5f0 net/socket.c:2242 __do_sys_recvfrom net/socket.c:2260 [inline] __se_sys_recvfrom net/socket.c:2256 [inline] __x64_sys_recvfrom+0x126/0x1d0 net/socket.c:2256 do_syscall_64+0xd5/0x1f0 entry_SYSCALL_64_after_hwframe+0x6d/0x75 Uninit was stored to memory at: pskb_expand_head+0x30f/0x19d0 net/core/skbuff.c:2253 netlink_trim+0x2c2/0x330 net/netlink/af_netlink.c:1317 netlink_unicast+0x9f/0x1260 net/netlink/af_netlink.c:1351 nlmsg_unicast include/net/netlink.h:1144 [inline] nlmsg_notify+0x21d/0x2f0 net/netlink/af_netlink.c:2610 rtnetlink_send+0x73/0x90 net/core/rtnetlink.c:741 rtnetlink_maybe_send include/linux/rtnetlink.h:17 [inline] tcf_add_notify net/sched/act_api.c:2048 [inline] tcf_action_add net/sched/act_api.c:2071 [inline] tc_ctl_action+0x146e/0x19d0 net/sched/act_api.c:2119 rtnetlink_rcv_msg+0x1737/0x1900 net/core/rtnetlink.c:6595 netlink_rcv_skb+0x375/0x650 net/netlink/af_netlink.c:2559 rtnetlink_rcv+0x34/0x40 net/core/rtnetlink.c:6613 netlink_unicast_kernel net/netlink/af_netlink.c:1335 [inline] netlink_unicast+0xf4c/0x1260 net/netlink/af_netlink.c:1361 netlink_sendmsg+0x10df/0x11f0 net/netlink/af_netlink.c:1905 sock_sendmsg_nosec net/socket.c:730 [inline] __sock_sendmsg+0x30f/0x380 net/socket.c:745 ____sys_sendmsg+0x877/0xb60 net/socket.c:2584 ___sys_sendmsg+0x28d/0x3c0 net/socket.c:2638 __sys_sendmsg net/socket.c:2667 [inline] __do_sys_sendmsg net/socket.c:2676 [inline] __se_sys_sendmsg net/socket.c:2674 [inline] __x64_sys_sendmsg+0x307/0x4a0 net/socket.c:2674 do_syscall_64+0xd5/0x1f0 entry_SYSCALL_64_after_hwframe+0x6d/0x75 Uninit was stored to memory at: __nla_put lib/nlattr.c:1041 [inline] nla_put+0x1c6/0x230 lib/nlattr.c:1099 tcf_skbmod_dump+0x23f/0xc20 net/sched/act_skbmod.c:256 tcf_action_dump_old net/sched/act_api.c:1191 [inline] tcf_action_dump_1+0x85e/0x970 net/sched/act_api.c:1227 tcf_action_dump+0x1fd/0x460 net/sched/act_api.c:1251 tca_get_fill+0x519/0x7a0 net/sched/act_api.c:1628 tcf_add_notify_msg net/sched/act_api.c:2023 [inline] tcf_add_notify net/sched/act_api.c:2042 [inline] tcf_action_add net/sched/act_api.c:2071 [inline] tc_ctl_action+0x1365/0x19d0 net/sched/act_api.c:2119 rtnetlink_rcv_msg+0x1737/0x1900 net/core/rtnetlink.c:6595 netlink_rcv_skb+0x375/0x650 net/netlink/af_netli ---truncated---

Published: May 19, 2024; 5:15:10 AM -0400
V4.0:(not available)
V3.x:(not available)
V2.0:(not available)
CVE-2024-35892

In the Linux kernel, the following vulnerability has been resolved: net/sched: fix lockdep splat in qdisc_tree_reduce_backlog() qdisc_tree_reduce_backlog() is called with the qdisc lock held, not RTNL. We must use qdisc_lookup_rcu() instead of qdisc_lookup() syzbot reported: WARNING: suspicious RCU usage 6.1.74-syzkaller #0 Not tainted ----------------------------- net/sched/sch_api.c:305 suspicious rcu_dereference_protected() usage! other info that might help us debug this: rcu_scheduler_active = 2, debug_locks = 1 3 locks held by udevd/1142: #0: ffffffff87c729a0 (rcu_read_lock){....}-{1:2}, at: rcu_lock_acquire include/linux/rcupdate.h:306 [inline] #0: ffffffff87c729a0 (rcu_read_lock){....}-{1:2}, at: rcu_read_lock include/linux/rcupdate.h:747 [inline] #0: ffffffff87c729a0 (rcu_read_lock){....}-{1:2}, at: net_tx_action+0x64a/0x970 net/core/dev.c:5282 #1: ffff888171861108 (&sch->q.lock){+.-.}-{2:2}, at: spin_lock include/linux/spinlock.h:350 [inline] #1: ffff888171861108 (&sch->q.lock){+.-.}-{2:2}, at: net_tx_action+0x754/0x970 net/core/dev.c:5297 #2: ffffffff87c729a0 (rcu_read_lock){....}-{1:2}, at: rcu_lock_acquire include/linux/rcupdate.h:306 [inline] #2: ffffffff87c729a0 (rcu_read_lock){....}-{1:2}, at: rcu_read_lock include/linux/rcupdate.h:747 [inline] #2: ffffffff87c729a0 (rcu_read_lock){....}-{1:2}, at: qdisc_tree_reduce_backlog+0x84/0x580 net/sched/sch_api.c:792 stack backtrace: CPU: 1 PID: 1142 Comm: udevd Not tainted 6.1.74-syzkaller #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/25/2024 Call Trace: <TASK> [<ffffffff85b85f14>] __dump_stack lib/dump_stack.c:88 [inline] [<ffffffff85b85f14>] dump_stack_lvl+0x1b1/0x28f lib/dump_stack.c:106 [<ffffffff85b86007>] dump_stack+0x15/0x1e lib/dump_stack.c:113 [<ffffffff81802299>] lockdep_rcu_suspicious+0x1b9/0x260 kernel/locking/lockdep.c:6592 [<ffffffff84f0054c>] qdisc_lookup+0xac/0x6f0 net/sched/sch_api.c:305 [<ffffffff84f037c3>] qdisc_tree_reduce_backlog+0x243/0x580 net/sched/sch_api.c:811 [<ffffffff84f5b78c>] pfifo_tail_enqueue+0x32c/0x4b0 net/sched/sch_fifo.c:51 [<ffffffff84fbcf63>] qdisc_enqueue include/net/sch_generic.h:833 [inline] [<ffffffff84fbcf63>] netem_dequeue+0xeb3/0x15d0 net/sched/sch_netem.c:723 [<ffffffff84eecab9>] dequeue_skb net/sched/sch_generic.c:292 [inline] [<ffffffff84eecab9>] qdisc_restart net/sched/sch_generic.c:397 [inline] [<ffffffff84eecab9>] __qdisc_run+0x249/0x1e60 net/sched/sch_generic.c:415 [<ffffffff84d7aa96>] qdisc_run+0xd6/0x260 include/net/pkt_sched.h:125 [<ffffffff84d85d29>] net_tx_action+0x7c9/0x970 net/core/dev.c:5313 [<ffffffff85e002bd>] __do_softirq+0x2bd/0x9bd kernel/softirq.c:616 [<ffffffff81568bca>] invoke_softirq kernel/softirq.c:447 [inline] [<ffffffff81568bca>] __irq_exit_rcu+0xca/0x230 kernel/softirq.c:700 [<ffffffff81568ae9>] irq_exit_rcu+0x9/0x20 kernel/softirq.c:712 [<ffffffff85b89f52>] sysvec_apic_timer_interrupt+0x42/0x90 arch/x86/kernel/apic/apic.c:1107 [<ffffffff85c00ccb>] asm_sysvec_apic_timer_interrupt+0x1b/0x20 arch/x86/include/asm/idtentry.h:656

Published: May 19, 2024; 5:15:10 AM -0400
V4.0:(not available)
V3.x:(not available)
V2.0:(not available)
CVE-2024-35891

In the Linux kernel, the following vulnerability has been resolved: net: phy: micrel: Fix potential null pointer dereference In lan8814_get_sig_rx() and lan8814_get_sig_tx() ptp_parse_header() may return NULL as ptp_header due to abnormal packet type or corrupted packet. Fix this bug by adding ptp_header check. Found by Linux Verification Center (linuxtesting.org) with SVACE.

Published: May 19, 2024; 5:15:10 AM -0400
V4.0:(not available)
V3.x:(not available)
V2.0:(not available)
CVE-2024-35890

In the Linux kernel, the following vulnerability has been resolved: gro: fix ownership transfer If packets are GROed with fraglist they might be segmented later on and continue their journey in the stack. In skb_segment_list those skbs can be reused as-is. This is an issue as their destructor was removed in skb_gro_receive_list but not the reference to their socket, and then they can't be orphaned. Fix this by also removing the reference to the socket. For example this could be observed, kernel BUG at include/linux/skbuff.h:3131! (skb_orphan) RIP: 0010:ip6_rcv_core+0x11bc/0x19a0 Call Trace: ipv6_list_rcv+0x250/0x3f0 __netif_receive_skb_list_core+0x49d/0x8f0 netif_receive_skb_list_internal+0x634/0xd40 napi_complete_done+0x1d2/0x7d0 gro_cell_poll+0x118/0x1f0 A similar construction is found in skb_gro_receive, apply the same change there.

Published: May 19, 2024; 5:15:10 AM -0400
V4.0:(not available)
V3.x:(not available)
V2.0:(not available)
CVE-2024-35889

In the Linux kernel, the following vulnerability has been resolved: idpf: fix kernel panic on unknown packet types In the very rare case where a packet type is unknown to the driver, idpf_rx_process_skb_fields would return early without calling eth_type_trans to set the skb protocol / the network layer handler. This is especially problematic if tcpdump is running when such a packet is received, i.e. it would cause a kernel panic. Instead, call eth_type_trans for every single packet, even when the packet type is unknown.

Published: May 19, 2024; 5:15:09 AM -0400
V4.0:(not available)
V3.x:(not available)
V2.0:(not available)
CVE-2024-35888

In the Linux kernel, the following vulnerability has been resolved: erspan: make sure erspan_base_hdr is present in skb->head syzbot reported a problem in ip6erspan_rcv() [1] Issue is that ip6erspan_rcv() (and erspan_rcv()) no longer make sure erspan_base_hdr is present in skb linear part (skb->head) before getting @ver field from it. Add the missing pskb_may_pull() calls. v2: Reload iph pointer in erspan_rcv() after pskb_may_pull() because skb->head might have changed. [1] BUG: KMSAN: uninit-value in pskb_may_pull_reason include/linux/skbuff.h:2742 [inline] BUG: KMSAN: uninit-value in pskb_may_pull include/linux/skbuff.h:2756 [inline] BUG: KMSAN: uninit-value in ip6erspan_rcv net/ipv6/ip6_gre.c:541 [inline] BUG: KMSAN: uninit-value in gre_rcv+0x11f8/0x1930 net/ipv6/ip6_gre.c:610 pskb_may_pull_reason include/linux/skbuff.h:2742 [inline] pskb_may_pull include/linux/skbuff.h:2756 [inline] ip6erspan_rcv net/ipv6/ip6_gre.c:541 [inline] gre_rcv+0x11f8/0x1930 net/ipv6/ip6_gre.c:610 ip6_protocol_deliver_rcu+0x1d4c/0x2ca0 net/ipv6/ip6_input.c:438 ip6_input_finish net/ipv6/ip6_input.c:483 [inline] NF_HOOK include/linux/netfilter.h:314 [inline] ip6_input+0x15d/0x430 net/ipv6/ip6_input.c:492 ip6_mc_input+0xa7e/0xc80 net/ipv6/ip6_input.c:586 dst_input include/net/dst.h:460 [inline] ip6_rcv_finish+0x955/0x970 net/ipv6/ip6_input.c:79 NF_HOOK include/linux/netfilter.h:314 [inline] ipv6_rcv+0xde/0x390 net/ipv6/ip6_input.c:310 __netif_receive_skb_one_core net/core/dev.c:5538 [inline] __netif_receive_skb+0x1da/0xa00 net/core/dev.c:5652 netif_receive_skb_internal net/core/dev.c:5738 [inline] netif_receive_skb+0x58/0x660 net/core/dev.c:5798 tun_rx_batched+0x3ee/0x980 drivers/net/tun.c:1549 tun_get_user+0x5566/0x69e0 drivers/net/tun.c:2002 tun_chr_write_iter+0x3af/0x5d0 drivers/net/tun.c:2048 call_write_iter include/linux/fs.h:2108 [inline] new_sync_write fs/read_write.c:497 [inline] vfs_write+0xb63/0x1520 fs/read_write.c:590 ksys_write+0x20f/0x4c0 fs/read_write.c:643 __do_sys_write fs/read_write.c:655 [inline] __se_sys_write fs/read_write.c:652 [inline] __x64_sys_write+0x93/0xe0 fs/read_write.c:652 do_syscall_64+0xd5/0x1f0 entry_SYSCALL_64_after_hwframe+0x6d/0x75 Uninit was created at: slab_post_alloc_hook mm/slub.c:3804 [inline] slab_alloc_node mm/slub.c:3845 [inline] kmem_cache_alloc_node+0x613/0xc50 mm/slub.c:3888 kmalloc_reserve+0x13d/0x4a0 net/core/skbuff.c:577 __alloc_skb+0x35b/0x7a0 net/core/skbuff.c:668 alloc_skb include/linux/skbuff.h:1318 [inline] alloc_skb_with_frags+0xc8/0xbf0 net/core/skbuff.c:6504 sock_alloc_send_pskb+0xa81/0xbf0 net/core/sock.c:2795 tun_alloc_skb drivers/net/tun.c:1525 [inline] tun_get_user+0x209a/0x69e0 drivers/net/tun.c:1846 tun_chr_write_iter+0x3af/0x5d0 drivers/net/tun.c:2048 call_write_iter include/linux/fs.h:2108 [inline] new_sync_write fs/read_write.c:497 [inline] vfs_write+0xb63/0x1520 fs/read_write.c:590 ksys_write+0x20f/0x4c0 fs/read_write.c:643 __do_sys_write fs/read_write.c:655 [inline] __se_sys_write fs/read_write.c:652 [inline] __x64_sys_write+0x93/0xe0 fs/read_write.c:652 do_syscall_64+0xd5/0x1f0 entry_SYSCALL_64_after_hwframe+0x6d/0x75 CPU: 1 PID: 5045 Comm: syz-executor114 Not tainted 6.9.0-rc1-syzkaller-00021-g962490525cff #0

Published: May 19, 2024; 5:15:09 AM -0400
V4.0:(not available)
V3.x:(not available)
V2.0:(not available)
CVE-2024-35887

In the Linux kernel, the following vulnerability has been resolved: ax25: fix use-after-free bugs caused by ax25_ds_del_timer When the ax25 device is detaching, the ax25_dev_device_down() calls ax25_ds_del_timer() to cleanup the slave_timer. When the timer handler is running, the ax25_ds_del_timer() that calls del_timer() in it will return directly. As a result, the use-after-free bugs could happen, one of the scenarios is shown below: (Thread 1) | (Thread 2) | ax25_ds_timeout() ax25_dev_device_down() | ax25_ds_del_timer() | del_timer() | ax25_dev_put() //FREE | | ax25_dev-> //USE In order to mitigate bugs, when the device is detaching, use timer_shutdown_sync() to stop the timer.

Published: May 19, 2024; 5:15:09 AM -0400
V4.0:(not available)
V3.x:(not available)
V2.0:(not available)
CVE-2024-35886

In the Linux kernel, the following vulnerability has been resolved: ipv6: Fix infinite recursion in fib6_dump_done(). syzkaller reported infinite recursive calls of fib6_dump_done() during netlink socket destruction. [1] From the log, syzkaller sent an AF_UNSPEC RTM_GETROUTE message, and then the response was generated. The following recvmmsg() resumed the dump for IPv6, but the first call of inet6_dump_fib() failed at kzalloc() due to the fault injection. [0] 12:01:34 executing program 3: r0 = socket$nl_route(0x10, 0x3, 0x0) sendmsg$nl_route(r0, ... snip ...) recvmmsg(r0, ... snip ...) (fail_nth: 8) Here, fib6_dump_done() was set to nlk_sk(sk)->cb.done, and the next call of inet6_dump_fib() set it to nlk_sk(sk)->cb.args[3]. syzkaller stopped receiving the response halfway through, and finally netlink_sock_destruct() called nlk_sk(sk)->cb.done(). fib6_dump_done() calls fib6_dump_end() and nlk_sk(sk)->cb.done() if it is still not NULL. fib6_dump_end() rewrites nlk_sk(sk)->cb.done() by nlk_sk(sk)->cb.args[3], but it has the same function, not NULL, calling itself recursively and hitting the stack guard page. To avoid the issue, let's set the destructor after kzalloc(). [0]: FAULT_INJECTION: forcing a failure. name failslab, interval 1, probability 0, space 0, times 0 CPU: 1 PID: 432110 Comm: syz-executor.3 Not tainted 6.8.0-12821-g537c2e91d354-dirty #11 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.0-0-gd239552ce722-prebuilt.qemu.org 04/01/2014 Call Trace: <TASK> dump_stack_lvl (lib/dump_stack.c:117) should_fail_ex (lib/fault-inject.c:52 lib/fault-inject.c:153) should_failslab (mm/slub.c:3733) kmalloc_trace (mm/slub.c:3748 mm/slub.c:3827 mm/slub.c:3992) inet6_dump_fib (./include/linux/slab.h:628 ./include/linux/slab.h:749 net/ipv6/ip6_fib.c:662) rtnl_dump_all (net/core/rtnetlink.c:4029) netlink_dump (net/netlink/af_netlink.c:2269) netlink_recvmsg (net/netlink/af_netlink.c:1988) ____sys_recvmsg (net/socket.c:1046 net/socket.c:2801) ___sys_recvmsg (net/socket.c:2846) do_recvmmsg (net/socket.c:2943) __x64_sys_recvmmsg (net/socket.c:3041 net/socket.c:3034 net/socket.c:3034) [1]: BUG: TASK stack guard page was hit at 00000000f2fa9af1 (stack is 00000000b7912430..000000009a436beb) stack guard page: 0000 [#1] PREEMPT SMP KASAN CPU: 1 PID: 223719 Comm: kworker/1:3 Not tainted 6.8.0-12821-g537c2e91d354-dirty #11 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.0-0-gd239552ce722-prebuilt.qemu.org 04/01/2014 Workqueue: events netlink_sock_destruct_work RIP: 0010:fib6_dump_done (net/ipv6/ip6_fib.c:570) Code: 3c 24 e8 f3 e9 51 fd e9 28 fd ff ff 66 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 00 f3 0f 1e fa 41 57 41 56 41 55 41 54 55 48 89 fd <53> 48 8d 5d 60 e8 b6 4d 07 fd 48 89 da 48 b8 00 00 00 00 00 fc ff RSP: 0018:ffffc9000d980000 EFLAGS: 00010293 RAX: 0000000000000000 RBX: ffffffff84405990 RCX: ffffffff844059d3 RDX: ffff8881028e0000 RSI: ffffffff84405ac2 RDI: ffff88810c02f358 RBP: ffff88810c02f358 R08: 0000000000000007 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000224 R12: 0000000000000000 R13: ffff888007c82c78 R14: ffff888007c82c68 R15: ffff888007c82c68 FS: 0000000000000000(0000) GS:ffff88811b100000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: ffffc9000d97fff8 CR3: 0000000102309002 CR4: 0000000000770ef0 PKRU: 55555554 Call Trace: <#DF> </#DF> <TASK> fib6_dump_done (net/ipv6/ip6_fib.c:572 (discriminator 1)) fib6_dump_done (net/ipv6/ip6_fib.c:572 (discriminator 1)) ... fib6_dump_done (net/ipv6/ip6_fib.c:572 (discriminator 1)) fib6_dump_done (net/ipv6/ip6_fib.c:572 (discriminator 1)) netlink_sock_destruct (net/netlink/af_netlink.c:401) __sk_destruct (net/core/sock.c:2177 (discriminator 2)) sk_destruct (net/core/sock.c:2224) __sk_free (net/core/sock.c:2235) sk_free (net/core/sock.c:2246) process_one_work (kernel/workqueue.c:3259) worker_thread (kernel/workqueue.c:3329 kernel/workqueue. ---truncated---

Published: May 19, 2024; 5:15:09 AM -0400
V4.0:(not available)
V3.x:(not available)
V2.0:(not available)
CVE-2024-35885

In the Linux kernel, the following vulnerability has been resolved: mlxbf_gige: stop interface during shutdown The mlxbf_gige driver intermittantly encounters a NULL pointer exception while the system is shutting down via "reboot" command. The mlxbf_driver will experience an exception right after executing its shutdown() method. One example of this exception is: Unable to handle kernel NULL pointer dereference at virtual address 0000000000000070 Mem abort info: ESR = 0x0000000096000004 EC = 0x25: DABT (current EL), IL = 32 bits SET = 0, FnV = 0 EA = 0, S1PTW = 0 FSC = 0x04: level 0 translation fault Data abort info: ISV = 0, ISS = 0x00000004 CM = 0, WnR = 0 user pgtable: 4k pages, 48-bit VAs, pgdp=000000011d373000 [0000000000000070] pgd=0000000000000000, p4d=0000000000000000 Internal error: Oops: 96000004 [#1] SMP CPU: 0 PID: 13 Comm: ksoftirqd/0 Tainted: G S OE 5.15.0-bf.6.gef6992a #1 Hardware name: https://www.mellanox.com BlueField SoC/BlueField SoC, BIOS 4.0.2.12669 Apr 21 2023 pstate: 20400009 (nzCv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--) pc : mlxbf_gige_handle_tx_complete+0xc8/0x170 [mlxbf_gige] lr : mlxbf_gige_poll+0x54/0x160 [mlxbf_gige] sp : ffff8000080d3c10 x29: ffff8000080d3c10 x28: ffffcce72cbb7000 x27: ffff8000080d3d58 x26: ffff0000814e7340 x25: ffff331cd1a05000 x24: ffffcce72c4ea008 x23: ffff0000814e4b40 x22: ffff0000814e4d10 x21: ffff0000814e4128 x20: 0000000000000000 x19: ffff0000814e4a80 x18: ffffffffffffffff x17: 000000000000001c x16: ffffcce72b4553f4 x15: ffff80008805b8a7 x14: 0000000000000000 x13: 0000000000000030 x12: 0101010101010101 x11: 7f7f7f7f7f7f7f7f x10: c2ac898b17576267 x9 : ffffcce720fa5404 x8 : ffff000080812138 x7 : 0000000000002e9a x6 : 0000000000000080 x5 : ffff00008de3b000 x4 : 0000000000000000 x3 : 0000000000000001 x2 : 0000000000000000 x1 : 0000000000000000 x0 : 0000000000000000 Call trace: mlxbf_gige_handle_tx_complete+0xc8/0x170 [mlxbf_gige] mlxbf_gige_poll+0x54/0x160 [mlxbf_gige] __napi_poll+0x40/0x1c8 net_rx_action+0x314/0x3a0 __do_softirq+0x128/0x334 run_ksoftirqd+0x54/0x6c smpboot_thread_fn+0x14c/0x190 kthread+0x10c/0x110 ret_from_fork+0x10/0x20 Code: 8b070000 f9000ea0 f95056c0 f86178a1 (b9407002) ---[ end trace 7cc3941aa0d8e6a4 ]--- Kernel panic - not syncing: Oops: Fatal exception in interrupt Kernel Offset: 0x4ce722520000 from 0xffff800008000000 PHYS_OFFSET: 0x80000000 CPU features: 0x000005c1,a3330e5a Memory Limit: none ---[ end Kernel panic - not syncing: Oops: Fatal exception in interrupt ]--- During system shutdown, the mlxbf_gige driver's shutdown() is always executed. However, the driver's stop() method will only execute if networking interface configuration logic within the Linux distribution has been setup to do so. If shutdown() executes but stop() does not execute, NAPI remains enabled and this can lead to an exception if NAPI is scheduled while the hardware interface has only been partially deinitialized. The networking interface managed by the mlxbf_gige driver must be properly stopped during system shutdown so that IFF_UP is cleared, the hardware interface is put into a clean state, and NAPI is fully deinitialized.

Published: May 19, 2024; 5:15:09 AM -0400
V4.0:(not available)
V3.x:(not available)
V2.0:(not available)
CVE-2024-35884

In the Linux kernel, the following vulnerability has been resolved: udp: do not accept non-tunnel GSO skbs landing in a tunnel When rx-udp-gro-forwarding is enabled UDP packets might be GROed when being forwarded. If such packets might land in a tunnel this can cause various issues and udp_gro_receive makes sure this isn't the case by looking for a matching socket. This is performed in udp4/6_gro_lookup_skb but only in the current netns. This is an issue with tunneled packets when the endpoint is in another netns. In such cases the packets will be GROed at the UDP level, which leads to various issues later on. The same thing can happen with rx-gro-list. We saw this with geneve packets being GROed at the UDP level. In such case gso_size is set; later the packet goes through the geneve rx path, the geneve header is pulled, the offset are adjusted and frag_list skbs are not adjusted with regard to geneve. When those skbs hit skb_fragment, it will misbehave. Different outcomes are possible depending on what the GROed skbs look like; from corrupted packets to kernel crashes. One example is a BUG_ON[1] triggered in skb_segment while processing the frag_list. Because gso_size is wrong (geneve header was pulled) skb_segment thinks there is "geneve header size" of data in frag_list, although it's in fact the next packet. The BUG_ON itself has nothing to do with the issue. This is only one of the potential issues. Looking up for a matching socket in udp_gro_receive is fragile: the lookup could be extended to all netns (not speaking about performances) but nothing prevents those packets from being modified in between and we could still not find a matching socket. It's OK to keep the current logic there as it should cover most cases but we also need to make sure we handle tunnel packets being GROed too early. This is done by extending the checks in udp_unexpected_gso: GSO packets lacking the SKB_GSO_UDP_TUNNEL/_CSUM bits and landing in a tunnel must be segmented. [1] kernel BUG at net/core/skbuff.c:4408! RIP: 0010:skb_segment+0xd2a/0xf70 __udp_gso_segment+0xaa/0x560

Published: May 19, 2024; 5:15:09 AM -0400
V4.0:(not available)
V3.x:(not available)
V2.0:(not available)
CVE-2024-35883

In the Linux kernel, the following vulnerability has been resolved: spi: mchp-pci1xxx: Fix a possible null pointer dereference in pci1xxx_spi_probe In function pci1xxxx_spi_probe, there is a potential null pointer that may be caused by a failed memory allocation by the function devm_kzalloc. Hence, a null pointer check needs to be added to prevent null pointer dereferencing later in the code. To fix this issue, spi_bus->spi_int[iter] should be checked. The memory allocated by devm_kzalloc will be automatically released, so just directly return -ENOMEM without worrying about memory leaks.

Published: May 19, 2024; 5:15:09 AM -0400
V4.0:(not available)
V3.x:(not available)
V2.0:(not available)
CVE-2024-35882

In the Linux kernel, the following vulnerability has been resolved: SUNRPC: Fix a slow server-side memory leak with RPC-over-TCP Jan Schunk reports that his small NFS servers suffer from memory exhaustion after just a few days. A bisect shows that commit e18e157bb5c8 ("SUNRPC: Send RPC message on TCP with a single sock_sendmsg() call") is the first bad commit. That commit assumed that sock_sendmsg() releases all the pages in the underlying bio_vec array, but the reality is that it doesn't. svc_xprt_release() releases the rqst's response pages, but the record marker page fragment isn't one of those, so it is never released. This is a narrow fix that can be applied to stable kernels. A more extensive fix is in the works.

Published: May 19, 2024; 5:15:09 AM -0400
V4.0:(not available)
V3.x:(not available)
V2.0:(not available)
CVE-2024-35880

In the Linux kernel, the following vulnerability has been resolved: io_uring/kbuf: hold io_buffer_list reference over mmap If we look up the kbuf, ensure that it doesn't get unregistered until after we're done with it. Since we're inside mmap, we cannot safely use the io_uring lock. Rely on the fact that we can lookup the buffer list under RCU now and grab a reference to it, preventing it from being unregistered until we're done with it. The lookup returns the io_buffer_list directly with it referenced.

Published: May 19, 2024; 5:15:09 AM -0400
V4.0:(not available)
V3.x:(not available)
V2.0:(not available)
CVE-2024-35879

In the Linux kernel, the following vulnerability has been resolved: of: dynamic: Synchronize of_changeset_destroy() with the devlink removals In the following sequence: 1) of_platform_depopulate() 2) of_overlay_remove() During the step 1, devices are destroyed and devlinks are removed. During the step 2, OF nodes are destroyed but __of_changeset_entry_destroy() can raise warnings related to missing of_node_put(): ERROR: memory leak, expected refcount 1 instead of 2 ... Indeed, during the devlink removals performed at step 1, the removal itself releasing the device (and the attached of_node) is done by a job queued in a workqueue and so, it is done asynchronously with respect to function calls. When the warning is present, of_node_put() will be called but wrongly too late from the workqueue job. In order to be sure that any ongoing devlink removals are done before the of_node destruction, synchronize the of_changeset_destroy() with the devlink removals.

Published: May 19, 2024; 5:15:09 AM -0400
V4.0:(not available)
V3.x:(not available)
V2.0:(not available)
CVE-2024-35878

In the Linux kernel, the following vulnerability has been resolved: of: module: prevent NULL pointer dereference in vsnprintf() In of_modalias(), we can get passed the str and len parameters which would cause a kernel oops in vsnprintf() since it only allows passing a NULL ptr when the length is also 0. Also, we need to filter out the negative values of the len parameter as these will result in a really huge buffer since snprintf() takes size_t parameter while ours is ssize_t... Found by Linux Verification Center (linuxtesting.org) with the Svace static analysis tool.

Published: May 19, 2024; 5:15:09 AM -0400
V4.0:(not available)
V3.x:(not available)
V2.0:(not available)
CVE-2024-35877

In the Linux kernel, the following vulnerability has been resolved: x86/mm/pat: fix VM_PAT handling in COW mappings PAT handling won't do the right thing in COW mappings: the first PTE (or, in fact, all PTEs) can be replaced during write faults to point at anon folios. Reliably recovering the correct PFN and cachemode using follow_phys() from PTEs will not work in COW mappings. Using follow_phys(), we might just get the address+protection of the anon folio (which is very wrong), or fail on swap/nonswap entries, failing follow_phys() and triggering a WARN_ON_ONCE() in untrack_pfn() and track_pfn_copy(), not properly calling free_pfn_range(). In free_pfn_range(), we either wouldn't call memtype_free() or would call it with the wrong range, possibly leaking memory. To fix that, let's update follow_phys() to refuse returning anon folios, and fallback to using the stored PFN inside vma->vm_pgoff for COW mappings if we run into that. We will now properly handle untrack_pfn() with COW mappings, where we don't need the cachemode. We'll have to fail fork()->track_pfn_copy() if the first page was replaced by an anon folio, though: we'd have to store the cachemode in the VMA to make this work, likely growing the VMA size. For now, lets keep it simple and let track_pfn_copy() just fail in that case: it would have failed in the past with swap/nonswap entries already, and it would have done the wrong thing with anon folios. Simple reproducer to trigger the WARN_ON_ONCE() in untrack_pfn(): <--- C reproducer ---> #include <stdio.h> #include <sys/mman.h> #include <unistd.h> #include <liburing.h> int main(void) { struct io_uring_params p = {}; int ring_fd; size_t size; char *map; ring_fd = io_uring_setup(1, &p); if (ring_fd < 0) { perror("io_uring_setup"); return 1; } size = p.sq_off.array + p.sq_entries * sizeof(unsigned); /* Map the submission queue ring MAP_PRIVATE */ map = mmap(0, size, PROT_READ | PROT_WRITE, MAP_PRIVATE, ring_fd, IORING_OFF_SQ_RING); if (map == MAP_FAILED) { perror("mmap"); return 1; } /* We have at least one page. Let's COW it. */ *map = 0; pause(); return 0; } <--- C reproducer ---> On a system with 16 GiB RAM and swap configured: # ./iouring & # memhog 16G # killall iouring [ 301.552930] ------------[ cut here ]------------ [ 301.553285] WARNING: CPU: 7 PID: 1402 at arch/x86/mm/pat/memtype.c:1060 untrack_pfn+0xf4/0x100 [ 301.553989] Modules linked in: binfmt_misc nft_fib_inet nft_fib_ipv4 nft_fib_ipv6 nft_fib nft_reject_g [ 301.558232] CPU: 7 PID: 1402 Comm: iouring Not tainted 6.7.5-100.fc38.x86_64 #1 [ 301.558772] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.16.3-0-ga6ed6b701f0a-prebu4 [ 301.559569] RIP: 0010:untrack_pfn+0xf4/0x100 [ 301.559893] Code: 75 c4 eb cf 48 8b 43 10 8b a8 e8 00 00 00 3b 6b 28 74 b8 48 8b 7b 30 e8 ea 1a f7 000 [ 301.561189] RSP: 0018:ffffba2c0377fab8 EFLAGS: 00010282 [ 301.561590] RAX: 00000000ffffffea RBX: ffff9208c8ce9cc0 RCX: 000000010455e047 [ 301.562105] RDX: 07fffffff0eb1e0a RSI: 0000000000000000 RDI: ffff9208c391d200 [ 301.562628] RBP: 0000000000000000 R08: ffffba2c0377fab8 R09: 0000000000000000 [ 301.563145] R10: ffff9208d2292d50 R11: 0000000000000002 R12: 00007fea890e0000 [ 301.563669] R13: 0000000000000000 R14: ffffba2c0377fc08 R15: 0000000000000000 [ 301.564186] FS: 0000000000000000(0000) GS:ffff920c2fbc0000(0000) knlGS:0000000000000000 [ 301.564773] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 301.565197] CR2: 00007fea88ee8a20 CR3: 00000001033a8000 CR4: 0000000000750ef0 [ 301.565725] PKRU: 55555554 [ 301.565944] Call Trace: [ 301.566148] <TASK> [ 301.566325] ? untrack_pfn+0xf4/0x100 [ 301.566618] ? __warn+0x81/0x130 [ 301.566876] ? untrack_pfn+0xf4/0x100 [ 3 ---truncated---

Published: May 19, 2024; 5:15:08 AM -0400
V4.0:(not available)
V3.x:(not available)
V2.0:(not available)