U.S. flag   An official website of the United States government
Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Https

Secure .gov websites use HTTPS
A lock (Dot gov) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Results (Refine Search)

Search Parameters:
  • Results Type: Overview
There are 243,482 matching records.
Displaying matches 1,021 through 1,040.
Vuln ID Summary CVSS Severity
CVE-2024-40936

In the Linux kernel, the following vulnerability has been resolved: cxl/region: Fix memregion leaks in devm_cxl_add_region() Move the mode verification to __create_region() before allocating the memregion to avoid the memregion leaks.

Published: July 12, 2024; 9:15:16 AM -0400
V4.0:(not available)
V3.x:(not available)
V2.0:(not available)
CVE-2024-40935

In the Linux kernel, the following vulnerability has been resolved: cachefiles: flush all requests after setting CACHEFILES_DEAD In ondemand mode, when the daemon is processing an open request, if the kernel flags the cache as CACHEFILES_DEAD, the cachefiles_daemon_write() will always return -EIO, so the daemon can't pass the copen to the kernel. Then the kernel process that is waiting for the copen triggers a hung_task. Since the DEAD state is irreversible, it can only be exited by closing /dev/cachefiles. Therefore, after calling cachefiles_io_error() to mark the cache as CACHEFILES_DEAD, if in ondemand mode, flush all requests to avoid the above hungtask. We may still be able to read some of the cached data before closing the fd of /dev/cachefiles. Note that this relies on the patch that adds reference counting to the req, otherwise it may UAF.

Published: July 12, 2024; 9:15:16 AM -0400
V4.0:(not available)
V3.x:(not available)
V2.0:(not available)
CVE-2024-40934

In the Linux kernel, the following vulnerability has been resolved: HID: logitech-dj: Fix memory leak in logi_dj_recv_switch_to_dj_mode() Fix a memory leak on logi_dj_recv_send_report() error path.

Published: July 12, 2024; 9:15:15 AM -0400
V4.0:(not available)
V3.x:(not available)
V2.0:(not available)
CVE-2024-40933

In the Linux kernel, the following vulnerability has been resolved: iio: temperature: mlx90635: Fix ERR_PTR dereference in mlx90635_probe() When devm_regmap_init_i2c() fails, regmap_ee could be error pointer, instead of checking for IS_ERR(regmap_ee), regmap is checked which looks like a copy paste error.

Published: July 12, 2024; 9:15:15 AM -0400
V4.0:(not available)
V3.x:(not available)
V2.0:(not available)
CVE-2024-40932

In the Linux kernel, the following vulnerability has been resolved: drm/exynos/vidi: fix memory leak in .get_modes() The duplicated EDID is never freed. Fix it.

Published: July 12, 2024; 9:15:15 AM -0400
V4.0:(not available)
V3.x:(not available)
V2.0:(not available)
CVE-2024-40931

In the Linux kernel, the following vulnerability has been resolved: mptcp: ensure snd_una is properly initialized on connect This is strictly related to commit fb7a0d334894 ("mptcp: ensure snd_nxt is properly initialized on connect"). It turns out that syzkaller can trigger the retransmit after fallback and before processing any other incoming packet - so that snd_una is still left uninitialized. Address the issue explicitly initializing snd_una together with snd_nxt and write_seq.

Published: July 12, 2024; 9:15:15 AM -0400
V4.0:(not available)
V3.x:(not available)
V2.0:(not available)
CVE-2024-40930

In the Linux kernel, the following vulnerability has been resolved: wifi: cfg80211: validate HE operation element parsing Validate that the HE operation element has the correct length before parsing it.

Published: July 12, 2024; 9:15:15 AM -0400
V4.0:(not available)
V3.x:(not available)
V2.0:(not available)
CVE-2024-40929

In the Linux kernel, the following vulnerability has been resolved: wifi: iwlwifi: mvm: check n_ssids before accessing the ssids In some versions of cfg80211, the ssids poinet might be a valid one even though n_ssids is 0. Accessing the pointer in this case will cuase an out-of-bound access. Fix this by checking n_ssids first.

Published: July 12, 2024; 9:15:15 AM -0400
V4.0:(not available)
V3.x:(not available)
V2.0:(not available)
CVE-2024-40928

In the Linux kernel, the following vulnerability has been resolved: net: ethtool: fix the error condition in ethtool_get_phy_stats_ethtool() Clang static checker (scan-build) warning: net/ethtool/ioctl.c:line 2233, column 2 Called function pointer is null (null dereference). Return '-EOPNOTSUPP' when 'ops->get_ethtool_phy_stats' is NULL to fix this typo error.

Published: July 12, 2024; 9:15:15 AM -0400
V4.0:(not available)
V3.x:(not available)
V2.0:(not available)
CVE-2024-40927

In the Linux kernel, the following vulnerability has been resolved: xhci: Handle TD clearing for multiple streams case When multiple streams are in use, multiple TDs might be in flight when an endpoint is stopped. We need to issue a Set TR Dequeue Pointer for each, to ensure everything is reset properly and the caches cleared. Change the logic so that any N>1 TDs found active for different streams are deferred until after the first one is processed, calling xhci_invalidate_cancelled_tds() again from xhci_handle_cmd_set_deq() to queue another command until we are done with all of them. Also change the error/"should never happen" paths to ensure we at least clear any affected TDs, even if we can't issue a command to clear the hardware cache, and complain loudly with an xhci_warn() if this ever happens. This problem case dates back to commit e9df17eb1408 ("USB: xhci: Correct assumptions about number of rings per endpoint.") early on in the XHCI driver's life, when stream support was first added. It was then identified but not fixed nor made into a warning in commit 674f8438c121 ("xhci: split handling halted endpoints into two steps"), which added a FIXME comment for the problem case (without materially changing the behavior as far as I can tell, though the new logic made the problem more obvious). Then later, in commit 94f339147fc3 ("xhci: Fix failure to give back some cached cancelled URBs."), it was acknowledged again. [Mathias: commit 94f339147fc3 ("xhci: Fix failure to give back some cached cancelled URBs.") was a targeted regression fix to the previously mentioned patch. Users reported issues with usb stuck after unmounting/disconnecting UAS devices. This rolled back the TD clearing of multiple streams to its original state.] Apparently the commit author was aware of the problem (yet still chose to submit it): It was still mentioned as a FIXME, an xhci_dbg() was added to log the problem condition, and the remaining issue was mentioned in the commit description. The choice of making the log type xhci_dbg() for what is, at this point, a completely unhandled and known broken condition is puzzling and unfortunate, as it guarantees that no actual users would see the log in production, thereby making it nigh undebuggable (indeed, even if you turn on DEBUG, the message doesn't really hint at there being a problem at all). It took me *months* of random xHC crashes to finally find a reliable repro and be able to do a deep dive debug session, which could all have been avoided had this unhandled, broken condition been actually reported with a warning, as it should have been as a bug intentionally left in unfixed (never mind that it shouldn't have been left in at all). > Another fix to solve clearing the caches of all stream rings with > cancelled TDs is needed, but not as urgent. 3 years after that statement and 14 years after the original bug was introduced, I think it's finally time to fix it. And maybe next time let's not leave bugs unfixed (that are actually worse than the original bug), and let's actually get people to review kernel commits please. Fixes xHC crashes and IOMMU faults with UAS devices when handling errors/faults. Easiest repro is to use `hdparm` to mark an early sector (e.g. 1024) on a disk as bad, then `cat /dev/sdX > /dev/null` in a loop. At least in the case of JMicron controllers, the read errors end up having to cancel two TDs (for two queued requests to different streams) and the one that didn't get cleared properly ends up faulting the xHC entirely when it tries to access DMA pages that have since been unmapped, referred to by the stale TDs. This normally happens quickly (after two or three loops). After this fix, I left the `cat` in a loop running overnight and experienced no xHC failures, with all read errors recovered properly. Repro'd and tested on an Apple M1 Mac Mini (dwc3 host). On systems without an IOMMU, this bug would instead silently corrupt freed memory, making this a ---truncated---

Published: July 12, 2024; 9:15:15 AM -0400
V4.0:(not available)
V3.x:(not available)
V2.0:(not available)
CVE-2024-40926

In the Linux kernel, the following vulnerability has been resolved: drm/nouveau: don't attempt to schedule hpd_work on headless cards If the card doesn't have display hardware, hpd_work and hpd_lock are left uninitialized which causes BUG when attempting to schedule hpd_work on runtime PM resume. Fix it by adding headless flag to DRM and skip any hpd if it's set.

Published: July 12, 2024; 9:15:15 AM -0400
V4.0:(not available)
V3.x:(not available)
V2.0:(not available)
CVE-2024-40925

In the Linux kernel, the following vulnerability has been resolved: block: fix request.queuelist usage in flush Friedrich Weber reported a kernel crash problem and bisected to commit 81ada09cc25e ("blk-flush: reuse rq queuelist in flush state machine"). The root cause is that we use "list_move_tail(&rq->queuelist, pending)" in the PREFLUSH/POSTFLUSH sequences. But rq->queuelist.next == xxx since it's popped out from plug->cached_rq in __blk_mq_alloc_requests_batch(). We don't initialize its queuelist just for this first request, although the queuelist of all later popped requests will be initialized. Fix it by changing to use "list_add_tail(&rq->queuelist, pending)" so rq->queuelist doesn't need to be initialized. It should be ok since rq can't be on any list when PREFLUSH or POSTFLUSH, has no move actually. Please note the commit 81ada09cc25e ("blk-flush: reuse rq queuelist in flush state machine") also has another requirement that no drivers would touch rq->queuelist after blk_mq_end_request() since we will reuse it to add rq to the post-flush pending list in POSTFLUSH. If this is not true, we will have to revert that commit IMHO. This updated version adds "list_del_init(&rq->queuelist)" in flush rq callback since the dm layer may submit request of a weird invalid format (REQ_FSEQ_PREFLUSH | REQ_FSEQ_POSTFLUSH), which causes double list_add if without this "list_del_init(&rq->queuelist)". The weird invalid format problem should be fixed in dm layer.

Published: July 12, 2024; 9:15:15 AM -0400
V4.0:(not available)
V3.x:(not available)
V2.0:(not available)
CVE-2024-40924

In the Linux kernel, the following vulnerability has been resolved: drm/i915/dpt: Make DPT object unshrinkable In some scenarios, the DPT object gets shrunk but the actual framebuffer did not and thus its still there on the DPT's vm->bound_list. Then it tries to rewrite the PTEs via a stale CPU mapping. This causes panic. [vsyrjala: Add TODO comment] (cherry picked from commit 51064d471c53dcc8eddd2333c3f1c1d9131ba36c)

Published: July 12, 2024; 9:15:15 AM -0400
V4.0:(not available)
V3.x:(not available)
V2.0:(not available)
CVE-2024-40923

In the Linux kernel, the following vulnerability has been resolved: vmxnet3: disable rx data ring on dma allocation failure When vmxnet3_rq_create() fails to allocate memory for rq->data_ring.base, the subsequent call to vmxnet3_rq_destroy_all_rxdataring does not reset rq->data_ring.desc_size for the data ring that failed, which presumably causes the hypervisor to reference it on packet reception. To fix this bug, rq->data_ring.desc_size needs to be set to 0 to tell the hypervisor to disable this feature. [ 95.436876] kernel BUG at net/core/skbuff.c:207! [ 95.439074] invalid opcode: 0000 [#1] PREEMPT SMP NOPTI [ 95.440411] CPU: 7 PID: 0 Comm: swapper/7 Not tainted 6.9.3-dirty #1 [ 95.441558] Hardware name: VMware, Inc. VMware Virtual Platform/440BX Desktop Reference Platform, BIOS 6.00 12/12/2018 [ 95.443481] RIP: 0010:skb_panic+0x4d/0x4f [ 95.444404] Code: 4f 70 50 8b 87 c0 00 00 00 50 8b 87 bc 00 00 00 50 ff b7 d0 00 00 00 4c 8b 8f c8 00 00 00 48 c7 c7 68 e8 be 9f e8 63 58 f9 ff <0f> 0b 48 8b 14 24 48 c7 c1 d0 73 65 9f e8 a1 ff ff ff 48 8b 14 24 [ 95.447684] RSP: 0018:ffffa13340274dd0 EFLAGS: 00010246 [ 95.448762] RAX: 0000000000000089 RBX: ffff8fbbc72b02d0 RCX: 000000000000083f [ 95.450148] RDX: 0000000000000000 RSI: 00000000000000f6 RDI: 000000000000083f [ 95.451520] RBP: 000000000000002d R08: 0000000000000000 R09: ffffa13340274c60 [ 95.452886] R10: ffffffffa04ed468 R11: 0000000000000002 R12: 0000000000000000 [ 95.454293] R13: ffff8fbbdab3c2d0 R14: ffff8fbbdbd829e0 R15: ffff8fbbdbd809e0 [ 95.455682] FS: 0000000000000000(0000) GS:ffff8fbeefd80000(0000) knlGS:0000000000000000 [ 95.457178] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 95.458340] CR2: 00007fd0d1f650c8 CR3: 0000000115f28000 CR4: 00000000000406f0 [ 95.459791] Call Trace: [ 95.460515] <IRQ> [ 95.461180] ? __die_body.cold+0x19/0x27 [ 95.462150] ? die+0x2e/0x50 [ 95.462976] ? do_trap+0xca/0x110 [ 95.463973] ? do_error_trap+0x6a/0x90 [ 95.464966] ? skb_panic+0x4d/0x4f [ 95.465901] ? exc_invalid_op+0x50/0x70 [ 95.466849] ? skb_panic+0x4d/0x4f [ 95.467718] ? asm_exc_invalid_op+0x1a/0x20 [ 95.468758] ? skb_panic+0x4d/0x4f [ 95.469655] skb_put.cold+0x10/0x10 [ 95.470573] vmxnet3_rq_rx_complete+0x862/0x11e0 [vmxnet3] [ 95.471853] vmxnet3_poll_rx_only+0x36/0xb0 [vmxnet3] [ 95.473185] __napi_poll+0x2b/0x160 [ 95.474145] net_rx_action+0x2c6/0x3b0 [ 95.475115] handle_softirqs+0xe7/0x2a0 [ 95.476122] __irq_exit_rcu+0x97/0xb0 [ 95.477109] common_interrupt+0x85/0xa0 [ 95.478102] </IRQ> [ 95.478846] <TASK> [ 95.479603] asm_common_interrupt+0x26/0x40 [ 95.480657] RIP: 0010:pv_native_safe_halt+0xf/0x20 [ 95.481801] Code: 22 d7 e9 54 87 01 00 0f 1f 40 00 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 f3 0f 1e fa eb 07 0f 00 2d 93 ba 3b 00 fb f4 <e9> 2c 87 01 00 66 66 2e 0f 1f 84 00 00 00 00 00 90 90 90 90 90 90 [ 95.485563] RSP: 0018:ffffa133400ffe58 EFLAGS: 00000246 [ 95.486882] RAX: 0000000000004000 RBX: ffff8fbbc1d14064 RCX: 0000000000000000 [ 95.488477] RDX: ffff8fbeefd80000 RSI: ffff8fbbc1d14000 RDI: 0000000000000001 [ 95.490067] RBP: ffff8fbbc1d14064 R08: ffffffffa0652260 R09: 00000000000010d3 [ 95.491683] R10: 0000000000000018 R11: ffff8fbeefdb4764 R12: ffffffffa0652260 [ 95.493389] R13: ffffffffa06522e0 R14: 0000000000000001 R15: 0000000000000000 [ 95.495035] acpi_safe_halt+0x14/0x20 [ 95.496127] acpi_idle_do_entry+0x2f/0x50 [ 95.497221] acpi_idle_enter+0x7f/0xd0 [ 95.498272] cpuidle_enter_state+0x81/0x420 [ 95.499375] cpuidle_enter+0x2d/0x40 [ 95.500400] do_idle+0x1e5/0x240 [ 95.501385] cpu_startup_entry+0x29/0x30 [ 95.502422] start_secondary+0x11c/0x140 [ 95.503454] common_startup_64+0x13e/0x141 [ 95.504466] </TASK> [ 95.505197] Modules linked in: nft_fib_inet nft_fib_ipv4 nft_fib_ipv6 nft_fib nft_reject_inet nf_reject_ipv4 nf_reject_ipv6 nft_reject nft_ct nft_chain_nat nf_nat nf_conntrack nf_defrag_ip ---truncated---

Published: July 12, 2024; 9:15:15 AM -0400
V4.0:(not available)
V3.x:(not available)
V2.0:(not available)
CVE-2024-40922

In the Linux kernel, the following vulnerability has been resolved: io_uring/rsrc: don't lock while !TASK_RUNNING There is a report of io_rsrc_ref_quiesce() locking a mutex while not TASK_RUNNING, which is due to forgetting restoring the state back after io_run_task_work_sig() and attempts to break out of the waiting loop. do not call blocking ops when !TASK_RUNNING; state=1 set at [<ffffffff815d2494>] prepare_to_wait+0xa4/0x380 kernel/sched/wait.c:237 WARNING: CPU: 2 PID: 397056 at kernel/sched/core.c:10099 __might_sleep+0x114/0x160 kernel/sched/core.c:10099 RIP: 0010:__might_sleep+0x114/0x160 kernel/sched/core.c:10099 Call Trace: <TASK> __mutex_lock_common kernel/locking/mutex.c:585 [inline] __mutex_lock+0xb4/0x940 kernel/locking/mutex.c:752 io_rsrc_ref_quiesce+0x590/0x940 io_uring/rsrc.c:253 io_sqe_buffers_unregister+0xa2/0x340 io_uring/rsrc.c:799 __io_uring_register io_uring/register.c:424 [inline] __do_sys_io_uring_register+0x5b9/0x2400 io_uring/register.c:613 do_syscall_x64 arch/x86/entry/common.c:52 [inline] do_syscall_64+0xd8/0x270 arch/x86/entry/common.c:83 entry_SYSCALL_64_after_hwframe+0x6f/0x77

Published: July 12, 2024; 9:15:15 AM -0400
V4.0:(not available)
V3.x:(not available)
V2.0:(not available)
CVE-2024-40921

In the Linux kernel, the following vulnerability has been resolved: net: bridge: mst: pass vlan group directly to br_mst_vlan_set_state Pass the already obtained vlan group pointer to br_mst_vlan_set_state() instead of dereferencing it again. Each caller has already correctly dereferenced it for their context. This change is required for the following suspicious RCU dereference fix. No functional changes intended.

Published: July 12, 2024; 9:15:15 AM -0400
V4.0:(not available)
V3.x:(not available)
V2.0:(not available)
CVE-2024-40920

In the Linux kernel, the following vulnerability has been resolved: net: bridge: mst: fix suspicious rcu usage in br_mst_set_state I converted br_mst_set_state to RCU to avoid a vlan use-after-free but forgot to change the vlan group dereference helper. Switch to vlan group RCU deref helper to fix the suspicious rcu usage warning.

Published: July 12, 2024; 9:15:15 AM -0400
V4.0:(not available)
V3.x:(not available)
V2.0:(not available)
CVE-2024-40919

In the Linux kernel, the following vulnerability has been resolved: bnxt_en: Adjust logging of firmware messages in case of released token in __hwrm_send() In case of token is released due to token->state == BNXT_HWRM_DEFERRED, released token (set to NULL) is used in log messages. This issue is expected to be prevented by HWRM_ERR_CODE_PF_UNAVAILABLE error code. But this error code is returned by recent firmware. So some firmware may not return it. This may lead to NULL pointer dereference. Adjust this issue by adding token pointer check. Found by Linux Verification Center (linuxtesting.org) with SVACE.

Published: July 12, 2024; 9:15:14 AM -0400
V4.0:(not available)
V3.x:(not available)
V2.0:(not available)
CVE-2024-40918

In the Linux kernel, the following vulnerability has been resolved: parisc: Try to fix random segmentation faults in package builds PA-RISC systems with PA8800 and PA8900 processors have had problems with random segmentation faults for many years. Systems with earlier processors are much more stable. Systems with PA8800 and PA8900 processors have a large L2 cache which needs per page flushing for decent performance when a large range is flushed. The combined cache in these systems is also more sensitive to non-equivalent aliases than the caches in earlier systems. The majority of random segmentation faults that I have looked at appear to be memory corruption in memory allocated using mmap and malloc. My first attempt at fixing the random faults didn't work. On reviewing the cache code, I realized that there were two issues which the existing code didn't handle correctly. Both relate to cache move-in. Another issue is that the present bit in PTEs is racy. 1) PA-RISC caches have a mind of their own and they can speculatively load data and instructions for a page as long as there is a entry in the TLB for the page which allows move-in. TLBs are local to each CPU. Thus, the TLB entry for a page must be purged before flushing the page. This is particularly important on SMP systems. In some of the flush routines, the flush routine would be called and then the TLB entry would be purged. This was because the flush routine needed the TLB entry to do the flush. 2) My initial approach to trying the fix the random faults was to try and use flush_cache_page_if_present for all flush operations. This actually made things worse and led to a couple of hardware lockups. It finally dawned on me that some lines weren't being flushed because the pte check code was racy. This resulted in random inequivalent mappings to physical pages. The __flush_cache_page tmpalias flush sets up its own TLB entry and it doesn't need the existing TLB entry. As long as we can find the pte pointer for the vm page, we can get the pfn and physical address of the page. We can also purge the TLB entry for the page before doing the flush. Further, __flush_cache_page uses a special TLB entry that inhibits cache move-in. When switching page mappings, we need to ensure that lines are removed from the cache. It is not sufficient to just flush the lines to memory as they may come back. This made it clear that we needed to implement all the required flush operations using tmpalias routines. This includes flushes for user and kernel pages. After modifying the code to use tmpalias flushes, it became clear that the random segmentation faults were not fully resolved. The frequency of faults was worse on systems with a 64 MB L2 (PA8900) and systems with more CPUs (rp4440). The warning that I added to flush_cache_page_if_present to detect pages that couldn't be flushed triggered frequently on some systems. Helge and I looked at the pages that couldn't be flushed and found that the PTE was either cleared or for a swap page. Ignoring pages that were swapped out seemed okay but pages with cleared PTEs seemed problematic. I looked at routines related to pte_clear and noticed ptep_clear_flush. The default implementation just flushes the TLB entry. However, it was obvious that on parisc we need to flush the cache page as well. If we don't flush the cache page, stale lines will be left in the cache and cause random corruption. Once a PTE is cleared, there is no way to find the physical address associated with the PTE and flush the associated page at a later time. I implemented an updated change with a parisc specific version of ptep_clear_flush. It fixed the random data corruption on Helge's rp4440 and rp3440, as well as on my c8000. At this point, I realized that I could restore the code where we only flush in flush_cache_page_if_present if the page has been accessed. However, for this, we also need to flush the cache when the accessed bit is cleared in ---truncated---

Published: July 12, 2024; 9:15:14 AM -0400
V4.0:(not available)
V3.x:(not available)
V2.0:(not available)
CVE-2024-40917

In the Linux kernel, the following vulnerability has been resolved: memblock: make memblock_set_node() also warn about use of MAX_NUMNODES On an (old) x86 system with SRAT just covering space above 4Gb: ACPI: SRAT: Node 0 PXM 0 [mem 0x100000000-0xfffffffff] hotplug the commit referenced below leads to this NUMA configuration no longer being refused by a CONFIG_NUMA=y kernel (previously NUMA: nodes only cover 6144MB of your 8185MB e820 RAM. Not used. No NUMA configuration found Faking a node at [mem 0x0000000000000000-0x000000027fffffff] was seen in the log directly after the message quoted above), because of memblock_validate_numa_coverage() checking for NUMA_NO_NODE (only). This in turn led to memblock_alloc_range_nid()'s warning about MAX_NUMNODES triggering, followed by a NULL deref in memmap_init() when trying to access node 64's (NODE_SHIFT=6) node data. To compensate said change, make memblock_set_node() warn on and adjust a passed in value of MAX_NUMNODES, just like various other functions already do.

Published: July 12, 2024; 9:15:14 AM -0400
V4.0:(not available)
V3.x:(not available)
V2.0:(not available)