U.S. flag   An official website of the United States government
Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Https

Secure .gov websites use HTTPS
A lock (Dot gov) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Results (Refine Search)

Search Parameters:
  • Search Type: Search Last 3 Months
There are 14,013 matching records.
Displaying matches 3,241 through 3,260.
Vuln ID Summary CVSS Severity
CVE-2021-47584

In the Linux kernel, the following vulnerability has been resolved: iocost: Fix divide-by-zero on donation from low hweight cgroup The donation calculation logic assumes that the donor has non-zero after-donation hweight, so the lowest active hweight a donating cgroup can have is 2 so that it can donate 1 while keeping the other 1 for itself. Earlier, we only donated from cgroups with sizable surpluses so this condition was always true. However, with the precise donation algorithm implemented, f1de2439ec43 ("blk-iocost: revamp donation amount determination") made the donation amount calculation exact enabling even low hweight cgroups to donate. This means that in rare occasions, a cgroup with active hweight of 1 can enter donation calculation triggering the following warning and then a divide-by-zero oops. WARNING: CPU: 4 PID: 0 at block/blk-iocost.c:1928 transfer_surpluses.cold+0x0/0x53 [884/94867] ... RIP: 0010:transfer_surpluses.cold+0x0/0x53 Code: 92 ff 48 c7 c7 28 d1 ab b5 65 48 8b 34 25 00 ae 01 00 48 81 c6 90 06 00 00 e8 8b 3f fe ff 48 c7 c0 ea ff ff ff e9 95 ff 92 ff <0f> 0b 48 c7 c7 30 da ab b5 e8 71 3f fe ff 4c 89 e8 4d 85 ed 74 0 4 ... Call Trace: <IRQ> ioc_timer_fn+0x1043/0x1390 call_timer_fn+0xa1/0x2c0 __run_timers.part.0+0x1ec/0x2e0 run_timer_softirq+0x35/0x70 ... iocg: invalid donation weights in /a/b: active=1 donating=1 after=0 Fix it by excluding cgroups w/ active hweight < 2 from donating. Excluding these extreme low hweight donations shouldn't affect work conservation in any meaningful way.

Published: June 19, 2024; 11:15:52 AM -0400
V4.0:(not available)
V3.x:(not available)
V2.0:(not available)
CVE-2021-47583

In the Linux kernel, the following vulnerability has been resolved: media: mxl111sf: change mutex_init() location Syzbot reported, that mxl111sf_ctrl_msg() uses uninitialized mutex. The problem was in wrong mutex_init() location. Previous mutex_init(&state->msg_lock) call was in ->init() function, but dvb_usbv2_init() has this order of calls: dvb_usbv2_init() dvb_usbv2_adapter_init() dvb_usbv2_adapter_frontend_init() props->frontend_attach() props->init() Since mxl111sf_* devices call mxl111sf_ctrl_msg() in ->frontend_attach() internally we need to initialize state->msg_lock before frontend_attach(). To achieve it, ->probe() call added to all mxl111sf_* devices, which will simply initiaize mutex.

Published: June 19, 2024; 11:15:52 AM -0400
V4.0:(not available)
V3.x:(not available)
V2.0:(not available)
CVE-2021-47582

In the Linux kernel, the following vulnerability has been resolved: USB: core: Make do_proc_control() and do_proc_bulk() killable The USBDEVFS_CONTROL and USBDEVFS_BULK ioctls invoke usb_start_wait_urb(), which contains an uninterruptible wait with a user-specified timeout value. If timeout value is very large and the device being accessed does not respond in a reasonable amount of time, the kernel will complain about "Task X blocked for more than N seconds", as found in testing by syzbot: INFO: task syz-executor.0:8700 blocked for more than 143 seconds. Not tainted 5.14.0-rc7-syzkaller #0 "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. task:syz-executor.0 state:D stack:23192 pid: 8700 ppid: 8455 flags:0x00004004 Call Trace: context_switch kernel/sched/core.c:4681 [inline] __schedule+0xc07/0x11f0 kernel/sched/core.c:5938 schedule+0x14b/0x210 kernel/sched/core.c:6017 schedule_timeout+0x98/0x2f0 kernel/time/timer.c:1857 do_wait_for_common+0x2da/0x480 kernel/sched/completion.c:85 __wait_for_common kernel/sched/completion.c:106 [inline] wait_for_common kernel/sched/completion.c:117 [inline] wait_for_completion_timeout+0x46/0x60 kernel/sched/completion.c:157 usb_start_wait_urb+0x167/0x550 drivers/usb/core/message.c:63 do_proc_bulk+0x978/0x1080 drivers/usb/core/devio.c:1236 proc_bulk drivers/usb/core/devio.c:1273 [inline] usbdev_do_ioctl drivers/usb/core/devio.c:2547 [inline] usbdev_ioctl+0x3441/0x6b10 drivers/usb/core/devio.c:2713 ... To fix this problem, this patch replaces usbfs's calls to usb_control_msg() and usb_bulk_msg() with special-purpose code that does essentially the same thing (as recommended in the comment for usb_start_wait_urb()), except that it always uses a killable wait and it uses GFP_KERNEL rather than GFP_NOIO.

Published: June 19, 2024; 11:15:52 AM -0400
V4.0:(not available)
V3.x:(not available)
V2.0:(not available)
CVE-2021-47580

In the Linux kernel, the following vulnerability has been resolved: scsi: scsi_debug: Fix type in min_t to avoid stack OOB Change min_t() to use type "u32" instead of type "int" to avoid stack out of bounds. With min_t() type "int" the values get sign extended and the larger value gets used causing stack out of bounds. BUG: KASAN: stack-out-of-bounds in memcpy include/linux/fortify-string.h:191 [inline] BUG: KASAN: stack-out-of-bounds in sg_copy_buffer+0x1de/0x240 lib/scatterlist.c:976 Read of size 127 at addr ffff888072607128 by task syz-executor.7/18707 CPU: 1 PID: 18707 Comm: syz-executor.7 Not tainted 5.15.0-syzk #1 Hardware name: Red Hat KVM, BIOS 1.13.0-2 Call Trace: __dump_stack lib/dump_stack.c:88 [inline] dump_stack_lvl+0x89/0xb5 lib/dump_stack.c:106 print_address_description.constprop.9+0x28/0x160 mm/kasan/report.c:256 __kasan_report mm/kasan/report.c:442 [inline] kasan_report.cold.14+0x7d/0x117 mm/kasan/report.c:459 check_region_inline mm/kasan/generic.c:183 [inline] kasan_check_range+0x1a3/0x210 mm/kasan/generic.c:189 memcpy+0x23/0x60 mm/kasan/shadow.c:65 memcpy include/linux/fortify-string.h:191 [inline] sg_copy_buffer+0x1de/0x240 lib/scatterlist.c:976 sg_copy_from_buffer+0x33/0x40 lib/scatterlist.c:1000 fill_from_dev_buffer.part.34+0x82/0x130 drivers/scsi/scsi_debug.c:1162 fill_from_dev_buffer drivers/scsi/scsi_debug.c:1888 [inline] resp_readcap16+0x365/0x3b0 drivers/scsi/scsi_debug.c:1887 schedule_resp+0x4d8/0x1a70 drivers/scsi/scsi_debug.c:5478 scsi_debug_queuecommand+0x8c9/0x1ec0 drivers/scsi/scsi_debug.c:7533 scsi_dispatch_cmd drivers/scsi/scsi_lib.c:1520 [inline] scsi_queue_rq+0x16b0/0x2d40 drivers/scsi/scsi_lib.c:1699 blk_mq_dispatch_rq_list+0xb9b/0x2700 block/blk-mq.c:1639 __blk_mq_sched_dispatch_requests+0x28f/0x590 block/blk-mq-sched.c:325 blk_mq_sched_dispatch_requests+0x105/0x190 block/blk-mq-sched.c:358 __blk_mq_run_hw_queue+0xe5/0x150 block/blk-mq.c:1761 __blk_mq_delay_run_hw_queue+0x4f8/0x5c0 block/blk-mq.c:1838 blk_mq_run_hw_queue+0x18d/0x350 block/blk-mq.c:1891 blk_mq_sched_insert_request+0x3db/0x4e0 block/blk-mq-sched.c:474 blk_execute_rq_nowait+0x16b/0x1c0 block/blk-exec.c:62 sg_common_write.isra.18+0xeb3/0x2000 drivers/scsi/sg.c:836 sg_new_write.isra.19+0x570/0x8c0 drivers/scsi/sg.c:774 sg_ioctl_common+0x14d6/0x2710 drivers/scsi/sg.c:939 sg_ioctl+0xa2/0x180 drivers/scsi/sg.c:1165 vfs_ioctl fs/ioctl.c:51 [inline] __do_sys_ioctl fs/ioctl.c:874 [inline] __se_sys_ioctl fs/ioctl.c:860 [inline] __x64_sys_ioctl+0x19d/0x220 fs/ioctl.c:860 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x3a/0x80 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x44/0xae

Published: June 19, 2024; 11:15:52 AM -0400
V4.0:(not available)
V3.x:(not available)
V2.0:(not available)
CVE-2021-47579

In the Linux kernel, the following vulnerability has been resolved: ovl: fix warning in ovl_create_real() Syzbot triggered the following warning in ovl_workdir_create() -> ovl_create_real(): if (!err && WARN_ON(!newdentry->d_inode)) { The reason is that the cgroup2 filesystem returns from mkdir without instantiating the new dentry. Weird filesystems such as this will be rejected by overlayfs at a later stage during setup, but to prevent such a warning, call ovl_mkdir_real() directly from ovl_workdir_create() and reject this case early.

Published: June 19, 2024; 11:15:52 AM -0400
V4.0:(not available)
V3.x:(not available)
V2.0:(not available)
CVE-2021-47578

In the Linux kernel, the following vulnerability has been resolved: scsi: scsi_debug: Don't call kcalloc() if size arg is zero If the size arg to kcalloc() is zero, it returns ZERO_SIZE_PTR. Because of that, for a following NULL pointer check to work on the returned pointer, kcalloc() must not be called with the size arg equal to zero. Return early without error before the kcalloc() call if size arg is zero. BUG: KASAN: null-ptr-deref in memcpy include/linux/fortify-string.h:191 [inline] BUG: KASAN: null-ptr-deref in sg_copy_buffer+0x138/0x240 lib/scatterlist.c:974 Write of size 4 at addr 0000000000000010 by task syz-executor.1/22789 CPU: 1 PID: 22789 Comm: syz-executor.1 Not tainted 5.15.0-syzk #1 Hardware name: Red Hat KVM, BIOS 1.13.0-2 Call Trace: __dump_stack lib/dump_stack.c:88 [inline] dump_stack_lvl+0x89/0xb5 lib/dump_stack.c:106 __kasan_report mm/kasan/report.c:446 [inline] kasan_report.cold.14+0x112/0x117 mm/kasan/report.c:459 check_region_inline mm/kasan/generic.c:183 [inline] kasan_check_range+0x1a3/0x210 mm/kasan/generic.c:189 memcpy+0x3b/0x60 mm/kasan/shadow.c:66 memcpy include/linux/fortify-string.h:191 [inline] sg_copy_buffer+0x138/0x240 lib/scatterlist.c:974 do_dout_fetch drivers/scsi/scsi_debug.c:2954 [inline] do_dout_fetch drivers/scsi/scsi_debug.c:2946 [inline] resp_verify+0x49e/0x930 drivers/scsi/scsi_debug.c:4276 schedule_resp+0x4d8/0x1a70 drivers/scsi/scsi_debug.c:5478 scsi_debug_queuecommand+0x8c9/0x1ec0 drivers/scsi/scsi_debug.c:7533 scsi_dispatch_cmd drivers/scsi/scsi_lib.c:1520 [inline] scsi_queue_rq+0x16b0/0x2d40 drivers/scsi/scsi_lib.c:1699 blk_mq_dispatch_rq_list+0xb9b/0x2700 block/blk-mq.c:1639 __blk_mq_sched_dispatch_requests+0x28f/0x590 block/blk-mq-sched.c:325 blk_mq_sched_dispatch_requests+0x105/0x190 block/blk-mq-sched.c:358 __blk_mq_run_hw_queue+0xe5/0x150 block/blk-mq.c:1761 __blk_mq_delay_run_hw_queue+0x4f8/0x5c0 block/blk-mq.c:1838 blk_mq_run_hw_queue+0x18d/0x350 block/blk-mq.c:1891 blk_mq_sched_insert_request+0x3db/0x4e0 block/blk-mq-sched.c:474 blk_execute_rq_nowait+0x16b/0x1c0 block/blk-exec.c:62 blk_execute_rq+0xdb/0x360 block/blk-exec.c:102 sg_scsi_ioctl drivers/scsi/scsi_ioctl.c:621 [inline] scsi_ioctl+0x8bb/0x15c0 drivers/scsi/scsi_ioctl.c:930 sg_ioctl_common+0x172d/0x2710 drivers/scsi/sg.c:1112 sg_ioctl+0xa2/0x180 drivers/scsi/sg.c:1165 vfs_ioctl fs/ioctl.c:51 [inline] __do_sys_ioctl fs/ioctl.c:874 [inline] __se_sys_ioctl fs/ioctl.c:860 [inline] __x64_sys_ioctl+0x19d/0x220 fs/ioctl.c:860 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x3a/0x80 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x44/0xae

Published: June 19, 2024; 11:15:52 AM -0400
V4.0:(not available)
V3.x:(not available)
V2.0:(not available)
CVE-2021-47577

In the Linux kernel, the following vulnerability has been resolved: io-wq: check for wq exit after adding new worker task_work We check IO_WQ_BIT_EXIT before attempting to create a new worker, and wq exit cancels pending work if we have any. But it's possible to have a race between the two, where creation checks exit finding it not set, but we're in the process of exiting. The exit side will cancel pending creation task_work, but there's a gap where we add task_work after we've canceled existing creations at exit time. Fix this by checking the EXIT bit post adding the creation task_work. If it's set, run the same cancelation that exit does.

Published: June 19, 2024; 11:15:52 AM -0400
V4.0:(not available)
V3.x:(not available)
V2.0:(not available)
CVE-2021-47576

In the Linux kernel, the following vulnerability has been resolved: scsi: scsi_debug: Sanity check block descriptor length in resp_mode_select() In resp_mode_select() sanity check the block descriptor len to avoid UAF. BUG: KASAN: use-after-free in resp_mode_select+0xa4c/0xb40 drivers/scsi/scsi_debug.c:2509 Read of size 1 at addr ffff888026670f50 by task scsicmd/15032 CPU: 1 PID: 15032 Comm: scsicmd Not tainted 5.15.0-01d0625 #15 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Call Trace: <TASK> dump_stack_lvl+0x89/0xb5 lib/dump_stack.c:107 print_address_description.constprop.9+0x28/0x160 mm/kasan/report.c:257 kasan_report.cold.14+0x7d/0x117 mm/kasan/report.c:443 __asan_report_load1_noabort+0x14/0x20 mm/kasan/report_generic.c:306 resp_mode_select+0xa4c/0xb40 drivers/scsi/scsi_debug.c:2509 schedule_resp+0x4af/0x1a10 drivers/scsi/scsi_debug.c:5483 scsi_debug_queuecommand+0x8c9/0x1e70 drivers/scsi/scsi_debug.c:7537 scsi_queue_rq+0x16b4/0x2d10 drivers/scsi/scsi_lib.c:1521 blk_mq_dispatch_rq_list+0xb9b/0x2700 block/blk-mq.c:1640 __blk_mq_sched_dispatch_requests+0x28f/0x590 block/blk-mq-sched.c:325 blk_mq_sched_dispatch_requests+0x105/0x190 block/blk-mq-sched.c:358 __blk_mq_run_hw_queue+0xe5/0x150 block/blk-mq.c:1762 __blk_mq_delay_run_hw_queue+0x4f8/0x5c0 block/blk-mq.c:1839 blk_mq_run_hw_queue+0x18d/0x350 block/blk-mq.c:1891 blk_mq_sched_insert_request+0x3db/0x4e0 block/blk-mq-sched.c:474 blk_execute_rq_nowait+0x16b/0x1c0 block/blk-exec.c:63 sg_common_write.isra.18+0xeb3/0x2000 drivers/scsi/sg.c:837 sg_new_write.isra.19+0x570/0x8c0 drivers/scsi/sg.c:775 sg_ioctl_common+0x14d6/0x2710 drivers/scsi/sg.c:941 sg_ioctl+0xa2/0x180 drivers/scsi/sg.c:1166 __x64_sys_ioctl+0x19d/0x220 fs/ioctl.c:52 do_syscall_64+0x3a/0x80 arch/x86/entry/common.c:50 entry_SYSCALL_64_after_hwframe+0x44/0xae arch/x86/entry/entry_64.S:113

Published: June 19, 2024; 11:15:52 AM -0400
V4.0:(not available)
V3.x:(not available)
V2.0:(not available)
CVE-2024-38618

In the Linux kernel, the following vulnerability has been resolved: ALSA: timer: Set lower bound of start tick time Currently ALSA timer doesn't have the lower limit of the start tick time, and it allows a very small size, e.g. 1 tick with 1ns resolution for hrtimer. Such a situation may lead to an unexpected RCU stall, where the callback repeatedly queuing the expire update, as reported by fuzzer. This patch introduces a sanity check of the timer start tick time, so that the system returns an error when a too small start size is set. As of this patch, the lower limit is hard-coded to 100us, which is small enough but can still work somehow.

Published: June 19, 2024; 10:15:21 AM -0400
V4.0:(not available)
V3.x:(not available)
V2.0:(not available)
CVE-2024-38617

In the Linux kernel, the following vulnerability has been resolved: kunit/fortify: Fix mismatched kvalloc()/vfree() usage The kv*() family of tests were accidentally freeing with vfree() instead of kvfree(). Use kvfree() instead.

Published: June 19, 2024; 10:15:21 AM -0400
V4.0:(not available)
V3.x:(not available)
V2.0:(not available)
CVE-2024-38616

In the Linux kernel, the following vulnerability has been resolved: wifi: carl9170: re-fix fortified-memset warning The carl9170_tx_release() function sometimes triggers a fortified-memset warning in my randconfig builds: In file included from include/linux/string.h:254, from drivers/net/wireless/ath/carl9170/tx.c:40: In function 'fortify_memset_chk', inlined from 'carl9170_tx_release' at drivers/net/wireless/ath/carl9170/tx.c:283:2, inlined from 'kref_put' at include/linux/kref.h:65:3, inlined from 'carl9170_tx_put_skb' at drivers/net/wireless/ath/carl9170/tx.c:342:9: include/linux/fortify-string.h:493:25: error: call to '__write_overflow_field' declared with attribute warning: detected write beyond size of field (1st parameter); maybe use struct_group()? [-Werror=attribute-warning] 493 | __write_overflow_field(p_size_field, size); Kees previously tried to avoid this by using memset_after(), but it seems this does not fully address the problem. I noticed that the memset_after() here is done on a different part of the union (status) than the original cast was from (rate_driver_data), which may confuse the compiler. Unfortunately, the memset_after() trick does not work on driver_rates[] because that is part of an anonymous struct, and I could not get struct_group() to do this either. Using two separate memset() calls on the two members does address the warning though.

Published: June 19, 2024; 10:15:21 AM -0400
V4.0:(not available)
V3.x:(not available)
V2.0:(not available)
CVE-2024-38615

In the Linux kernel, the following vulnerability has been resolved: cpufreq: exit() callback is optional The exit() callback is optional and shouldn't be called without checking a valid pointer first. Also, we must clear freq_table pointer even if the exit() callback isn't present.

Published: June 19, 2024; 10:15:21 AM -0400
V4.0:(not available)
V3.x:(not available)
V2.0:(not available)
CVE-2024-38614

In the Linux kernel, the following vulnerability has been resolved: openrisc: traps: Don't send signals to kernel mode threads OpenRISC exception handling sends signals to user processes on floating point exceptions and trap instructions (for debugging) among others. There is a bug where the trap handling logic may send signals to kernel threads, we should not send these signals to kernel threads, if that happens we treat it as an error. This patch adds conditions to die if the kernel receives these exceptions in kernel mode code.

Published: June 19, 2024; 10:15:21 AM -0400
V4.0:(not available)
V3.x:(not available)
V2.0:(not available)
CVE-2024-38613

In the Linux kernel, the following vulnerability has been resolved: m68k: Fix spinlock race in kernel thread creation Context switching does take care to retain the correct lock owner across the switch from 'prev' to 'next' tasks. This does rely on interrupts remaining disabled for the entire duration of the switch. This condition is guaranteed for normal process creation and context switching between already running processes, because both 'prev' and 'next' already have interrupts disabled in their saved copies of the status register. The situation is different for newly created kernel threads. The status register is set to PS_S in copy_thread(), which does leave the IPL at 0. Upon restoring the 'next' thread's status register in switch_to() aka resume(), interrupts then become enabled prematurely. resume() then returns via ret_from_kernel_thread() and schedule_tail() where run queue lock is released (see finish_task_switch() and finish_lock_switch()). A timer interrupt calling scheduler_tick() before the lock is released in finish_task_switch() will find the lock already taken, with the current task as lock owner. This causes a spinlock recursion warning as reported by Guenter Roeck. As far as I can ascertain, this race has been opened in commit 533e6903bea0 ("m68k: split ret_from_fork(), simplify kernel_thread()") but I haven't done a detailed study of kernel history so it may well predate that commit. Interrupts cannot be disabled in the saved status register copy for kernel threads (init will complain about interrupts disabled when finally starting user space). Disable interrupts temporarily when switching the tasks' register sets in resume(). Note that a simple oriw 0x700,%sr after restoring sr is not enough here - this leaves enough of a race for the 'spinlock recursion' warning to still be observed. Tested on ARAnyM and qemu (Quadra 800 emulation).

Published: June 19, 2024; 10:15:21 AM -0400
V4.0:(not available)
V3.x:(not available)
V2.0:(not available)
CVE-2024-38612

In the Linux kernel, the following vulnerability has been resolved: ipv6: sr: fix invalid unregister error path The error path of seg6_init() is wrong in case CONFIG_IPV6_SEG6_LWTUNNEL is not defined. In that case if seg6_hmac_init() fails, the genl_unregister_family() isn't called. This issue exist since commit 46738b1317e1 ("ipv6: sr: add option to control lwtunnel support"), and commit 5559cea2d5aa ("ipv6: sr: fix possible use-after-free and null-ptr-deref") replaced unregister_pernet_subsys() with genl_unregister_family() in this error path.

Published: June 19, 2024; 10:15:21 AM -0400
V4.0:(not available)
V3.x:(not available)
V2.0:(not available)
CVE-2024-38611

In the Linux kernel, the following vulnerability has been resolved: media: i2c: et8ek8: Don't strip remove function when driver is builtin Using __exit for the remove function results in the remove callback being discarded with CONFIG_VIDEO_ET8EK8=y. When such a device gets unbound (e.g. using sysfs or hotplug), the driver is just removed without the cleanup being performed. This results in resource leaks. Fix it by compiling in the remove callback unconditionally. This also fixes a W=1 modpost warning: WARNING: modpost: drivers/media/i2c/et8ek8/et8ek8: section mismatch in reference: et8ek8_i2c_driver+0x10 (section: .data) -> et8ek8_remove (section: .exit.text)

Published: June 19, 2024; 10:15:20 AM -0400
V4.0:(not available)
V3.x:(not available)
V2.0:(not available)
CVE-2024-38610

In the Linux kernel, the following vulnerability has been resolved: drivers/virt/acrn: fix PFNMAP PTE checks in acrn_vm_ram_map() Patch series "mm: follow_pte() improvements and acrn follow_pte() fixes". Patch #1 fixes a bunch of issues I spotted in the acrn driver. It compiles, that's all I know. I'll appreciate some review and testing from acrn folks. Patch #2+#3 improve follow_pte(), passing a VMA instead of the MM, adding more sanity checks, and improving the documentation. Gave it a quick test on x86-64 using VM_PAT that ends up using follow_pte(). This patch (of 3): We currently miss handling various cases, resulting in a dangerous follow_pte() (previously follow_pfn()) usage. (1) We're not checking PTE write permissions. Maybe we should simply always require pte_write() like we do for pin_user_pages_fast(FOLL_WRITE)? Hard to tell, so let's check for ACRN_MEM_ACCESS_WRITE for now. (2) We're not rejecting refcounted pages. As we are not using MMU notifiers, messing with refcounted pages is dangerous and can result in use-after-free. Let's make sure to reject them. (3) We are only looking at the first PTE of a bigger range. We only lookup a single PTE, but memmap->len may span a larger area. Let's loop over all involved PTEs and make sure the PFN range is actually contiguous. Reject everything else: it couldn't have worked either way, and rather made use access PFNs we shouldn't be accessing.

Published: June 19, 2024; 10:15:20 AM -0400
V4.0:(not available)
V3.x:(not available)
V2.0:(not available)
CVE-2024-38609

In the Linux kernel, the following vulnerability has been resolved: wifi: mt76: connac: check for null before dereferencing The wcid can be NULL. It should be checked for validity before dereferencing it to avoid crash.

Published: June 19, 2024; 10:15:20 AM -0400
V4.0:(not available)
V3.x:(not available)
V2.0:(not available)
CVE-2024-38608

In the Linux kernel, the following vulnerability has been resolved: net/mlx5e: Fix netif state handling mlx5e_suspend cleans resources only if netif_device_present() returns true. However, mlx5e_resume changes the state of netif, via mlx5e_nic_enable, only if reg_state == NETREG_REGISTERED. In the below case, the above leads to NULL-ptr Oops[1] and memory leaks: mlx5e_probe _mlx5e_resume mlx5e_attach_netdev mlx5e_nic_enable <-- netdev not reg, not calling netif_device_attach() register_netdev <-- failed for some reason. ERROR_FLOW: _mlx5e_suspend <-- netif_device_present return false, resources aren't freed :( Hence, clean resources in this case as well. [1] BUG: kernel NULL pointer dereference, address: 0000000000000000 PGD 0 P4D 0 Oops: 0010 [#1] SMP CPU: 2 PID: 9345 Comm: test-ovs-ct-gen Not tainted 6.5.0_for_upstream_min_debug_2023_09_05_16_01 #1 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 RIP: 0010:0x0 Code: Unable to access opcode bytes at0xffffffffffffffd6. RSP: 0018:ffff888178aaf758 EFLAGS: 00010246 Call Trace: <TASK> ? __die+0x20/0x60 ? page_fault_oops+0x14c/0x3c0 ? exc_page_fault+0x75/0x140 ? asm_exc_page_fault+0x22/0x30 notifier_call_chain+0x35/0xb0 blocking_notifier_call_chain+0x3d/0x60 mlx5_blocking_notifier_call_chain+0x22/0x30 [mlx5_core] mlx5_core_uplink_netdev_event_replay+0x3e/0x60 [mlx5_core] mlx5_mdev_netdev_track+0x53/0x60 [mlx5_ib] mlx5_ib_roce_init+0xc3/0x340 [mlx5_ib] __mlx5_ib_add+0x34/0xd0 [mlx5_ib] mlx5r_probe+0xe1/0x210 [mlx5_ib] ? auxiliary_match_id+0x6a/0x90 auxiliary_bus_probe+0x38/0x80 ? driver_sysfs_add+0x51/0x80 really_probe+0xc9/0x3e0 ? driver_probe_device+0x90/0x90 __driver_probe_device+0x80/0x160 driver_probe_device+0x1e/0x90 __device_attach_driver+0x7d/0x100 bus_for_each_drv+0x80/0xd0 __device_attach+0xbc/0x1f0 bus_probe_device+0x86/0xa0 device_add+0x637/0x840 __auxiliary_device_add+0x3b/0xa0 add_adev+0xc9/0x140 [mlx5_core] mlx5_rescan_drivers_locked+0x22a/0x310 [mlx5_core] mlx5_register_device+0x53/0xa0 [mlx5_core] mlx5_init_one_devl_locked+0x5c4/0x9c0 [mlx5_core] mlx5_init_one+0x3b/0x60 [mlx5_core] probe_one+0x44c/0x730 [mlx5_core] local_pci_probe+0x3e/0x90 pci_device_probe+0xbf/0x210 ? kernfs_create_link+0x5d/0xa0 ? sysfs_do_create_link_sd+0x60/0xc0 really_probe+0xc9/0x3e0 ? driver_probe_device+0x90/0x90 __driver_probe_device+0x80/0x160 driver_probe_device+0x1e/0x90 __device_attach_driver+0x7d/0x100 bus_for_each_drv+0x80/0xd0 __device_attach+0xbc/0x1f0 pci_bus_add_device+0x54/0x80 pci_iov_add_virtfn+0x2e6/0x320 sriov_enable+0x208/0x420 mlx5_core_sriov_configure+0x9e/0x200 [mlx5_core] sriov_numvfs_store+0xae/0x1a0 kernfs_fop_write_iter+0x10c/0x1a0 vfs_write+0x291/0x3c0 ksys_write+0x5f/0xe0 do_syscall_64+0x3d/0x90 entry_SYSCALL_64_after_hwframe+0x46/0xb0 CR2: 0000000000000000 ---[ end trace 0000000000000000 ]---

Published: June 19, 2024; 10:15:20 AM -0400
V4.0:(not available)
V3.x:(not available)
V2.0:(not available)
CVE-2024-38607

In the Linux kernel, the following vulnerability has been resolved: macintosh/via-macii: Fix "BUG: sleeping function called from invalid context" The via-macii ADB driver calls request_irq() after disabling hard interrupts. But disabling interrupts isn't necessary here because the VIA shift register interrupt was masked during VIA1 initialization.

Published: June 19, 2024; 10:15:20 AM -0400
V4.0:(not available)
V3.x:(not available)
V2.0:(not available)