U.S. flag   An official website of the United States government
Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Https

Secure .gov websites use HTTPS
A lock (Dot gov) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Results (Refine Search)

Search Parameters:
  • Search Type: Search Last 3 Months
There are 14,052 matching records.
Displaying matches 6,801 through 6,820.
Vuln ID Summary CVSS Severity
CVE-2021-47240

In the Linux kernel, the following vulnerability has been resolved: net: qrtr: fix OOB Read in qrtr_endpoint_post Syzbot reported slab-out-of-bounds Read in qrtr_endpoint_post. The problem was in wrong _size_ type: if (len != ALIGN(size, 4) + hdrlen) goto err; If size from qrtr_hdr is 4294967293 (0xfffffffd), the result of ALIGN(size, 4) will be 0. In case of len == hdrlen and size == 4294967293 in header this check won't fail and skb_put_data(skb, data + hdrlen, size); will read out of bound from data, which is hdrlen allocated block.

Published: May 21, 2024; 11:15:13 AM -0400
V4.0:(not available)
V3.x:(not available)
V2.0:(not available)
CVE-2021-47239

In the Linux kernel, the following vulnerability has been resolved: net: usb: fix possible use-after-free in smsc75xx_bind The commit 46a8b29c6306 ("net: usb: fix memory leak in smsc75xx_bind") fails to clean up the work scheduled in smsc75xx_reset-> smsc75xx_set_multicast, which leads to use-after-free if the work is scheduled to start after the deallocation. In addition, this patch also removes a dangling pointer - dev->data[0]. This patch calls cancel_work_sync to cancel the scheduled work and set the dangling pointer to NULL.

Published: May 21, 2024; 11:15:13 AM -0400
V4.0:(not available)
V3.x:(not available)
V2.0:(not available)
CVE-2021-47238

In the Linux kernel, the following vulnerability has been resolved: net: ipv4: fix memory leak in ip_mc_add1_src BUG: memory leak unreferenced object 0xffff888101bc4c00 (size 32): comm "syz-executor527", pid 360, jiffies 4294807421 (age 19.329s) hex dump (first 32 bytes): 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 01 00 00 00 00 00 00 00 ac 14 14 bb 00 00 02 00 ................ backtrace: [<00000000f17c5244>] kmalloc include/linux/slab.h:558 [inline] [<00000000f17c5244>] kzalloc include/linux/slab.h:688 [inline] [<00000000f17c5244>] ip_mc_add1_src net/ipv4/igmp.c:1971 [inline] [<00000000f17c5244>] ip_mc_add_src+0x95f/0xdb0 net/ipv4/igmp.c:2095 [<000000001cb99709>] ip_mc_source+0x84c/0xea0 net/ipv4/igmp.c:2416 [<0000000052cf19ed>] do_ip_setsockopt net/ipv4/ip_sockglue.c:1294 [inline] [<0000000052cf19ed>] ip_setsockopt+0x114b/0x30c0 net/ipv4/ip_sockglue.c:1423 [<00000000477edfbc>] raw_setsockopt+0x13d/0x170 net/ipv4/raw.c:857 [<00000000e75ca9bb>] __sys_setsockopt+0x158/0x270 net/socket.c:2117 [<00000000bdb993a8>] __do_sys_setsockopt net/socket.c:2128 [inline] [<00000000bdb993a8>] __se_sys_setsockopt net/socket.c:2125 [inline] [<00000000bdb993a8>] __x64_sys_setsockopt+0xba/0x150 net/socket.c:2125 [<000000006a1ffdbd>] do_syscall_64+0x40/0x80 arch/x86/entry/common.c:47 [<00000000b11467c4>] entry_SYSCALL_64_after_hwframe+0x44/0xae In commit 24803f38a5c0 ("igmp: do not remove igmp souce list info when set link down"), the ip_mc_clear_src() in ip_mc_destroy_dev() was removed, because it was also called in igmpv3_clear_delrec(). Rough callgraph: inetdev_destroy -> ip_mc_destroy_dev -> igmpv3_clear_delrec -> ip_mc_clear_src -> RCU_INIT_POINTER(dev->ip_ptr, NULL) However, ip_mc_clear_src() called in igmpv3_clear_delrec() doesn't release in_dev->mc_list->sources. And RCU_INIT_POINTER() assigns the NULL to dev->ip_ptr. As a result, in_dev cannot be obtained through inetdev_by_index() and then in_dev->mc_list->sources cannot be released by ip_mc_del1_src() in the sock_close. Rough call sequence goes like: sock_close -> __sock_release -> inet_release -> ip_mc_drop_socket -> inetdev_by_index -> ip_mc_leave_src -> ip_mc_del_src -> ip_mc_del1_src So we still need to call ip_mc_clear_src() in ip_mc_destroy_dev() to free in_dev->mc_list->sources.

Published: May 21, 2024; 11:15:13 AM -0400
V4.0:(not available)
V3.x:(not available)
V2.0:(not available)
CVE-2021-47237

In the Linux kernel, the following vulnerability has been resolved: net: hamradio: fix memory leak in mkiss_close My local syzbot instance hit memory leak in mkiss_open()[1]. The problem was in missing free_netdev() in mkiss_close(). In mkiss_open() netdevice is allocated and then registered, but in mkiss_close() netdevice was only unregistered, but not freed. Fail log: BUG: memory leak unreferenced object 0xffff8880281ba000 (size 4096): comm "syz-executor.1", pid 11443, jiffies 4295046091 (age 17.660s) hex dump (first 32 bytes): 61 78 30 00 00 00 00 00 00 00 00 00 00 00 00 00 ax0............. 00 27 fa 2a 80 88 ff ff 00 00 00 00 00 00 00 00 .'.*............ backtrace: [<ffffffff81a27201>] kvmalloc_node+0x61/0xf0 [<ffffffff8706e7e8>] alloc_netdev_mqs+0x98/0xe80 [<ffffffff84e64192>] mkiss_open+0xb2/0x6f0 [1] [<ffffffff842355db>] tty_ldisc_open+0x9b/0x110 [<ffffffff84236488>] tty_set_ldisc+0x2e8/0x670 [<ffffffff8421f7f3>] tty_ioctl+0xda3/0x1440 [<ffffffff81c9f273>] __x64_sys_ioctl+0x193/0x200 [<ffffffff8911263a>] do_syscall_64+0x3a/0xb0 [<ffffffff89200068>] entry_SYSCALL_64_after_hwframe+0x44/0xae BUG: memory leak unreferenced object 0xffff8880141a9a00 (size 96): comm "syz-executor.1", pid 11443, jiffies 4295046091 (age 17.660s) hex dump (first 32 bytes): e8 a2 1b 28 80 88 ff ff e8 a2 1b 28 80 88 ff ff ...(.......(.... 98 92 9c aa b0 40 02 00 00 00 00 00 00 00 00 00 .....@.......... backtrace: [<ffffffff8709f68b>] __hw_addr_create_ex+0x5b/0x310 [<ffffffff8709fb38>] __hw_addr_add_ex+0x1f8/0x2b0 [<ffffffff870a0c7b>] dev_addr_init+0x10b/0x1f0 [<ffffffff8706e88b>] alloc_netdev_mqs+0x13b/0xe80 [<ffffffff84e64192>] mkiss_open+0xb2/0x6f0 [1] [<ffffffff842355db>] tty_ldisc_open+0x9b/0x110 [<ffffffff84236488>] tty_set_ldisc+0x2e8/0x670 [<ffffffff8421f7f3>] tty_ioctl+0xda3/0x1440 [<ffffffff81c9f273>] __x64_sys_ioctl+0x193/0x200 [<ffffffff8911263a>] do_syscall_64+0x3a/0xb0 [<ffffffff89200068>] entry_SYSCALL_64_after_hwframe+0x44/0xae BUG: memory leak unreferenced object 0xffff8880219bfc00 (size 512): comm "syz-executor.1", pid 11443, jiffies 4295046091 (age 17.660s) hex dump (first 32 bytes): 00 a0 1b 28 80 88 ff ff 80 8f b1 8d ff ff ff ff ...(............ 80 8f b1 8d ff ff ff ff 00 00 00 00 00 00 00 00 ................ backtrace: [<ffffffff81a27201>] kvmalloc_node+0x61/0xf0 [<ffffffff8706eec7>] alloc_netdev_mqs+0x777/0xe80 [<ffffffff84e64192>] mkiss_open+0xb2/0x6f0 [1] [<ffffffff842355db>] tty_ldisc_open+0x9b/0x110 [<ffffffff84236488>] tty_set_ldisc+0x2e8/0x670 [<ffffffff8421f7f3>] tty_ioctl+0xda3/0x1440 [<ffffffff81c9f273>] __x64_sys_ioctl+0x193/0x200 [<ffffffff8911263a>] do_syscall_64+0x3a/0xb0 [<ffffffff89200068>] entry_SYSCALL_64_after_hwframe+0x44/0xae BUG: memory leak unreferenced object 0xffff888029b2b200 (size 256): comm "syz-executor.1", pid 11443, jiffies 4295046091 (age 17.660s) hex dump (first 32 bytes): 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ backtrace: [<ffffffff81a27201>] kvmalloc_node+0x61/0xf0 [<ffffffff8706f062>] alloc_netdev_mqs+0x912/0xe80 [<ffffffff84e64192>] mkiss_open+0xb2/0x6f0 [1] [<ffffffff842355db>] tty_ldisc_open+0x9b/0x110 [<ffffffff84236488>] tty_set_ldisc+0x2e8/0x670 [<ffffffff8421f7f3>] tty_ioctl+0xda3/0x1440 [<ffffffff81c9f273>] __x64_sys_ioctl+0x193/0x200 [<ffffffff8911263a>] do_syscall_64+0x3a/0xb0 [<ffffffff89200068>] entry_SYSCALL_64_after_hwframe+0x44/0xae

Published: May 21, 2024; 11:15:12 AM -0400
V4.0:(not available)
V3.x:(not available)
V2.0:(not available)
CVE-2021-47236

In the Linux kernel, the following vulnerability has been resolved: net: cdc_eem: fix tx fixup skb leak when usbnet transmit a skb, eem fixup it in eem_tx_fixup(), if skb_copy_expand() failed, it return NULL, usbnet_start_xmit() will have no chance to free original skb. fix it by free orginal skb in eem_tx_fixup() first, then check skb clone status, if failed, return NULL to usbnet.

Published: May 21, 2024; 11:15:12 AM -0400
V4.0:(not available)
V3.x:(not available)
V2.0:(not available)
CVE-2021-47235

In the Linux kernel, the following vulnerability has been resolved: net: ethernet: fix potential use-after-free in ec_bhf_remove static void ec_bhf_remove(struct pci_dev *dev) { ... struct ec_bhf_priv *priv = netdev_priv(net_dev); unregister_netdev(net_dev); free_netdev(net_dev); pci_iounmap(dev, priv->dma_io); pci_iounmap(dev, priv->io); ... } priv is netdev private data, but it is used after free_netdev(). It can cause use-after-free when accessing priv pointer. So, fix it by moving free_netdev() after pci_iounmap() calls.

Published: May 21, 2024; 11:15:12 AM -0400
V4.0:(not available)
V3.x:(not available)
V2.0:(not available)
CVE-2021-47234

In the Linux kernel, the following vulnerability has been resolved: phy: phy-mtk-tphy: Fix some resource leaks in mtk_phy_init() Use clk_disable_unprepare() in the error path of mtk_phy_init() to fix some resource leaks.

Published: May 21, 2024; 11:15:12 AM -0400
V4.0:(not available)
V3.x:(not available)
V2.0:(not available)
CVE-2021-47233

In the Linux kernel, the following vulnerability has been resolved: regulator: rt4801: Fix NULL pointer dereference if priv->enable_gpios is NULL devm_gpiod_get_array_optional may return NULL if no GPIO was assigned.

Published: May 21, 2024; 11:15:12 AM -0400
V4.0:(not available)
V3.x:(not available)
V2.0:(not available)
CVE-2021-47232

In the Linux kernel, the following vulnerability has been resolved: can: j1939: fix Use-after-Free, hold skb ref while in use This patch fixes a Use-after-Free found by the syzbot. The problem is that a skb is taken from the per-session skb queue, without incrementing the ref count. This leads to a Use-after-Free if the skb is taken concurrently from the session queue due to a CTS.

Published: May 21, 2024; 11:15:12 AM -0400
V4.0:(not available)
V3.x:(not available)
V2.0:(not available)
CVE-2021-47231

In the Linux kernel, the following vulnerability has been resolved: can: mcba_usb: fix memory leak in mcba_usb Syzbot reported memory leak in SocketCAN driver for Microchip CAN BUS Analyzer Tool. The problem was in unfreed usb_coherent. In mcba_usb_start() 20 coherent buffers are allocated and there is nothing, that frees them: 1) In callback function the urb is resubmitted and that's all 2) In disconnect function urbs are simply killed, but URB_FREE_BUFFER is not set (see mcba_usb_start) and this flag cannot be used with coherent buffers. Fail log: | [ 1354.053291][ T8413] mcba_usb 1-1:0.0 can0: device disconnected | [ 1367.059384][ T8420] kmemleak: 20 new suspected memory leaks (see /sys/kernel/debug/kmem) So, all allocated buffers should be freed with usb_free_coherent() explicitly NOTE: The same pattern for allocating and freeing coherent buffers is used in drivers/net/can/usb/kvaser_usb/kvaser_usb_core.c

Published: May 21, 2024; 11:15:12 AM -0400
V4.0:(not available)
V3.x:(not available)
V2.0:(not available)
CVE-2021-47230

In the Linux kernel, the following vulnerability has been resolved: KVM: x86: Immediately reset the MMU context when the SMM flag is cleared Immediately reset the MMU context when the vCPU's SMM flag is cleared so that the SMM flag in the MMU role is always synchronized with the vCPU's flag. If RSM fails (which isn't correctly emulated), KVM will bail without calling post_leave_smm() and leave the MMU in a bad state. The bad MMU role can lead to a NULL pointer dereference when grabbing a shadow page's rmap for a page fault as the initial lookups for the gfn will happen with the vCPU's SMM flag (=0), whereas the rmap lookup will use the shadow page's SMM flag, which comes from the MMU (=1). SMM has an entirely different set of memslots, and so the initial lookup can find a memslot (SMM=0) and then explode on the rmap memslot lookup (SMM=1). general protection fault, probably for non-canonical address 0xdffffc0000000000: 0000 [#1] PREEMPT SMP KASAN KASAN: null-ptr-deref in range [0x0000000000000000-0x0000000000000007] CPU: 1 PID: 8410 Comm: syz-executor382 Not tainted 5.13.0-rc5-syzkaller #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 RIP: 0010:__gfn_to_rmap arch/x86/kvm/mmu/mmu.c:935 [inline] RIP: 0010:gfn_to_rmap+0x2b0/0x4d0 arch/x86/kvm/mmu/mmu.c:947 Code: <42> 80 3c 20 00 74 08 4c 89 ff e8 f1 79 a9 00 4c 89 fb 4d 8b 37 44 RSP: 0018:ffffc90000ffef98 EFLAGS: 00010246 RAX: 0000000000000000 RBX: ffff888015b9f414 RCX: ffff888019669c40 RDX: 0000000000000000 RSI: 0000000000000001 RDI: 0000000000000001 RBP: 0000000000000001 R08: ffffffff811d9cdb R09: ffffed10065a6002 R10: ffffed10065a6002 R11: 0000000000000000 R12: dffffc0000000000 R13: 0000000000000003 R14: 0000000000000001 R15: 0000000000000000 FS: 000000000124b300(0000) GS:ffff8880b9b00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000000000 CR3: 0000000028e31000 CR4: 00000000001526e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: rmap_add arch/x86/kvm/mmu/mmu.c:965 [inline] mmu_set_spte+0x862/0xe60 arch/x86/kvm/mmu/mmu.c:2604 __direct_map arch/x86/kvm/mmu/mmu.c:2862 [inline] direct_page_fault+0x1f74/0x2b70 arch/x86/kvm/mmu/mmu.c:3769 kvm_mmu_do_page_fault arch/x86/kvm/mmu.h:124 [inline] kvm_mmu_page_fault+0x199/0x1440 arch/x86/kvm/mmu/mmu.c:5065 vmx_handle_exit+0x26/0x160 arch/x86/kvm/vmx/vmx.c:6122 vcpu_enter_guest+0x3bdd/0x9630 arch/x86/kvm/x86.c:9428 vcpu_run+0x416/0xc20 arch/x86/kvm/x86.c:9494 kvm_arch_vcpu_ioctl_run+0x4e8/0xa40 arch/x86/kvm/x86.c:9722 kvm_vcpu_ioctl+0x70f/0xbb0 arch/x86/kvm/../../../virt/kvm/kvm_main.c:3460 vfs_ioctl fs/ioctl.c:51 [inline] __do_sys_ioctl fs/ioctl.c:1069 [inline] __se_sys_ioctl+0xfb/0x170 fs/ioctl.c:1055 do_syscall_64+0x3f/0xb0 arch/x86/entry/common.c:47 entry_SYSCALL_64_after_hwframe+0x44/0xae RIP: 0033:0x440ce9

Published: May 21, 2024; 11:15:12 AM -0400
V4.0:(not available)
V3.x:(not available)
V2.0:(not available)
CVE-2021-47229

In the Linux kernel, the following vulnerability has been resolved: PCI: aardvark: Fix kernel panic during PIO transfer Trying to start a new PIO transfer by writing value 0 in PIO_START register when previous transfer has not yet completed (which is indicated by value 1 in PIO_START) causes an External Abort on CPU, which results in kernel panic: SError Interrupt on CPU0, code 0xbf000002 -- SError Kernel panic - not syncing: Asynchronous SError Interrupt To prevent kernel panic, it is required to reject a new PIO transfer when previous one has not finished yet. If previous PIO transfer is not finished yet, the kernel may issue a new PIO request only if the previous PIO transfer timed out. In the past the root cause of this issue was incorrectly identified (as it often happens during link retraining or after link down event) and special hack was implemented in Trusted Firmware to catch all SError events in EL3, to ignore errors with code 0xbf000002 and not forwarding any other errors to kernel and instead throw panic from EL3 Trusted Firmware handler. Links to discussion and patches about this issue: https://git.trustedfirmware.org/TF-A/trusted-firmware-a.git/commit/?id=3c7dcdac5c50 https://lore.kernel.org/linux-pci/20190316161243.29517-1-repk@triplefau.lt/ https://lore.kernel.org/linux-pci/971be151d24312cc533989a64bd454b4@www.loen.fr/ https://review.trustedfirmware.org/c/TF-A/trusted-firmware-a/+/1541 But the real cause was the fact that during link retraining or after link down event the PIO transfer may take longer time, up to the 1.44s until it times out. This increased probability that a new PIO transfer would be issued by kernel while previous one has not finished yet. After applying this change into the kernel, it is possible to revert the mentioned TF-A hack and SError events do not have to be caught in TF-A EL3.

Published: May 21, 2024; 11:15:12 AM -0400
V4.0:(not available)
V3.x:(not available)
V2.0:(not available)
CVE-2021-47228

In the Linux kernel, the following vulnerability has been resolved: x86/ioremap: Map EFI-reserved memory as encrypted for SEV Some drivers require memory that is marked as EFI boot services data. In order for this memory to not be re-used by the kernel after ExitBootServices(), efi_mem_reserve() is used to preserve it by inserting a new EFI memory descriptor and marking it with the EFI_MEMORY_RUNTIME attribute. Under SEV, memory marked with the EFI_MEMORY_RUNTIME attribute needs to be mapped encrypted by Linux, otherwise the kernel might crash at boot like below: EFI Variables Facility v0.08 2004-May-17 general protection fault, probably for non-canonical address 0x3597688770a868b2: 0000 [#1] SMP NOPTI CPU: 13 PID: 1 Comm: swapper/0 Not tainted 5.12.4-2-default #1 openSUSE Tumbleweed Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 0.0.0 02/06/2015 RIP: 0010:efi_mokvar_entry_next [...] Call Trace: efi_mokvar_sysfs_init ? efi_mokvar_table_init do_one_initcall ? __kmalloc kernel_init_freeable ? rest_init kernel_init ret_from_fork Expand the __ioremap_check_other() function to additionally check for this other type of boot data reserved at runtime and indicate that it should be mapped encrypted for an SEV guest. [ bp: Massage commit message. ]

Published: May 21, 2024; 11:15:12 AM -0400
V4.0:(not available)
V3.x:(not available)
V2.0:(not available)
CVE-2021-47227

In the Linux kernel, the following vulnerability has been resolved: x86/fpu: Prevent state corruption in __fpu__restore_sig() The non-compacted slowpath uses __copy_from_user() and copies the entire user buffer into the kernel buffer, verbatim. This means that the kernel buffer may now contain entirely invalid state on which XRSTOR will #GP. validate_user_xstate_header() can detect some of that corruption, but that leaves the onus on callers to clear the buffer. Prior to XSAVES support, it was possible just to reinitialize the buffer, completely, but with supervisor states that is not longer possible as the buffer clearing code split got it backwards. Fixing that is possible but not corrupting the state in the first place is more robust. Avoid corruption of the kernel XSAVE buffer by using copy_user_to_xstate() which validates the XSAVE header contents before copying the actual states to the kernel. copy_user_to_xstate() was previously only called for compacted-format kernel buffers, but it works for both compacted and non-compacted forms. Using it for the non-compacted form is slower because of multiple __copy_from_user() operations, but that cost is less important than robust code in an already slow path. [ Changelog polished by Dave Hansen ]

Published: May 21, 2024; 11:15:11 AM -0400
V4.0:(not available)
V3.x:(not available)
V2.0:(not available)
CVE-2021-47226

In the Linux kernel, the following vulnerability has been resolved: x86/fpu: Invalidate FPU state after a failed XRSTOR from a user buffer Both Intel and AMD consider it to be architecturally valid for XRSTOR to fail with #PF but nonetheless change the register state. The actual conditions under which this might occur are unclear [1], but it seems plausible that this might be triggered if one sibling thread unmaps a page and invalidates the shared TLB while another sibling thread is executing XRSTOR on the page in question. __fpu__restore_sig() can execute XRSTOR while the hardware registers are preserved on behalf of a different victim task (using the fpu_fpregs_owner_ctx mechanism), and, in theory, XRSTOR could fail but modify the registers. If this happens, then there is a window in which __fpu__restore_sig() could schedule out and the victim task could schedule back in without reloading its own FPU registers. This would result in part of the FPU state that __fpu__restore_sig() was attempting to load leaking into the victim task's user-visible state. Invalidate preserved FPU registers on XRSTOR failure to prevent this situation from corrupting any state. [1] Frequent readers of the errata lists might imagine "complex microarchitectural conditions".

Published: May 21, 2024; 11:15:11 AM -0400
V4.0:(not available)
V3.x:(not available)
V2.0:(not available)
CVE-2021-47225

In the Linux kernel, the following vulnerability has been resolved: mac80211: fix deadlock in AP/VLAN handling Syzbot reports that when you have AP_VLAN interfaces that are up and close the AP interface they belong to, we get a deadlock. No surprise - since we dev_close() them with the wiphy mutex held, which goes back into the netdev notifier in cfg80211 and tries to acquire the wiphy mutex there. To fix this, we need to do two things: 1) prevent changing iftype while AP_VLANs are up, we can't easily fix this case since cfg80211 already calls us with the wiphy mutex held, but change_interface() is relatively rare in drivers anyway, so changing iftype isn't used much (and userspace has to fall back to down/change/up anyway) 2) pull the dev_close() loop over VLANs out of the wiphy mutex section in the normal stop case

Published: May 21, 2024; 11:15:11 AM -0400
V4.0:(not available)
V3.x:(not available)
V2.0:(not available)
CVE-2021-47224

In the Linux kernel, the following vulnerability has been resolved: net: ll_temac: Make sure to free skb when it is completely used With the skb pointer piggy-backed on the TX BD, we have a simple and efficient way to free the skb buffer when the frame has been transmitted. But in order to avoid freeing the skb while there are still fragments from the skb in use, we need to piggy-back on the TX BD of the skb, not the first. Without this, we are doing use-after-free on the DMA side, when the first BD of a multi TX BD packet is seen as completed in xmit_done, and the remaining BDs are still being processed.

Published: May 21, 2024; 11:15:11 AM -0400
V4.0:(not available)
V3.x:(not available)
V2.0:(not available)
CVE-2021-47223

In the Linux kernel, the following vulnerability has been resolved: net: bridge: fix vlan tunnel dst null pointer dereference This patch fixes a tunnel_dst null pointer dereference due to lockless access in the tunnel egress path. When deleting a vlan tunnel the tunnel_dst pointer is set to NULL without waiting a grace period (i.e. while it's still usable) and packets egressing are dereferencing it without checking. Use READ/WRITE_ONCE to annotate the lockless use of tunnel_id, use RCU for accessing tunnel_dst and make sure it is read only once and checked in the egress path. The dst is already properly RCU protected so we don't need to do anything fancy than to make sure tunnel_id and tunnel_dst are read only once and checked in the egress path.

Published: May 21, 2024; 11:15:11 AM -0400
V4.0:(not available)
V3.x:(not available)
V2.0:(not available)
CVE-2021-47222

In the Linux kernel, the following vulnerability has been resolved: net: bridge: fix vlan tunnel dst refcnt when egressing The egress tunnel code uses dst_clone() and directly sets the result which is wrong because the entry might have 0 refcnt or be already deleted, causing number of problems. It also triggers the WARN_ON() in dst_hold()[1] when a refcnt couldn't be taken. Fix it by using dst_hold_safe() and checking if a reference was actually taken before setting the dst. [1] dmesg WARN_ON log and following refcnt errors WARNING: CPU: 5 PID: 38 at include/net/dst.h:230 br_handle_egress_vlan_tunnel+0x10b/0x134 [bridge] Modules linked in: 8021q garp mrp bridge stp llc bonding ipv6 virtio_net CPU: 5 PID: 38 Comm: ksoftirqd/5 Kdump: loaded Tainted: G W 5.13.0-rc3+ #360 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.14.0-1.fc33 04/01/2014 RIP: 0010:br_handle_egress_vlan_tunnel+0x10b/0x134 [bridge] Code: e8 85 bc 01 e1 45 84 f6 74 90 45 31 f6 85 db 48 c7 c7 a0 02 19 a0 41 0f 94 c6 31 c9 31 d2 44 89 f6 e8 64 bc 01 e1 85 db 75 02 <0f> 0b 31 c9 31 d2 44 89 f6 48 c7 c7 70 02 19 a0 e8 4b bc 01 e1 49 RSP: 0018:ffff8881003d39e8 EFLAGS: 00010246 RAX: 0000000000000000 RBX: 0000000000000000 RCX: 0000000000000000 RDX: 0000000000000000 RSI: 0000000000000001 RDI: ffffffffa01902a0 RBP: ffff8881040c6700 R08: 0000000000000000 R09: 0000000000000001 R10: 2ce93d0054fe0d00 R11: 54fe0d00000e0000 R12: ffff888109515000 R13: 0000000000000000 R14: 0000000000000001 R15: 0000000000000401 FS: 0000000000000000(0000) GS:ffff88822bf40000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f42ba70f030 CR3: 0000000109926000 CR4: 00000000000006e0 Call Trace: br_handle_vlan+0xbc/0xca [bridge] __br_forward+0x23/0x164 [bridge] deliver_clone+0x41/0x48 [bridge] br_handle_frame_finish+0x36f/0x3aa [bridge] ? skb_dst+0x2e/0x38 [bridge] ? br_handle_ingress_vlan_tunnel+0x3e/0x1c8 [bridge] ? br_handle_frame_finish+0x3aa/0x3aa [bridge] br_handle_frame+0x2c3/0x377 [bridge] ? __skb_pull+0x33/0x51 ? vlan_do_receive+0x4f/0x36a ? br_handle_frame_finish+0x3aa/0x3aa [bridge] __netif_receive_skb_core+0x539/0x7c6 ? __list_del_entry_valid+0x16e/0x1c2 __netif_receive_skb_list_core+0x6d/0xd6 netif_receive_skb_list_internal+0x1d9/0x1fa gro_normal_list+0x22/0x3e dev_gro_receive+0x55b/0x600 ? detach_buf_split+0x58/0x140 napi_gro_receive+0x94/0x12e virtnet_poll+0x15d/0x315 [virtio_net] __napi_poll+0x2c/0x1c9 net_rx_action+0xe6/0x1fb __do_softirq+0x115/0x2d8 run_ksoftirqd+0x18/0x20 smpboot_thread_fn+0x183/0x19c ? smpboot_unregister_percpu_thread+0x66/0x66 kthread+0x10a/0x10f ? kthread_mod_delayed_work+0xb6/0xb6 ret_from_fork+0x22/0x30 ---[ end trace 49f61b07f775fd2b ]--- dst_release: dst:00000000c02d677a refcnt:-1 dst_release underflow

Published: May 21, 2024; 11:15:11 AM -0400
V4.0:(not available)
V3.x:(not available)
V2.0:(not available)
CVE-2021-47221

In the Linux kernel, the following vulnerability has been resolved: mm/slub: actually fix freelist pointer vs redzoning It turns out that SLUB redzoning ("slub_debug=Z") checks from s->object_size rather than from s->inuse (which is normally bumped to make room for the freelist pointer), so a cache created with an object size less than 24 would have the freelist pointer written beyond s->object_size, causing the redzone to be corrupted by the freelist pointer. This was very visible with "slub_debug=ZF": BUG test (Tainted: G B ): Right Redzone overwritten ----------------------------------------------------------------------------- INFO: 0xffff957ead1c05de-0xffff957ead1c05df @offset=1502. First byte 0x1a instead of 0xbb INFO: Slab 0xffffef3950b47000 objects=170 used=170 fp=0x0000000000000000 flags=0x8000000000000200 INFO: Object 0xffff957ead1c05d8 @offset=1496 fp=0xffff957ead1c0620 Redzone (____ptrval____): bb bb bb bb bb bb bb bb ........ Object (____ptrval____): 00 00 00 00 00 f6 f4 a5 ........ Redzone (____ptrval____): 40 1d e8 1a aa @.... Padding (____ptrval____): 00 00 00 00 00 00 00 00 ........ Adjust the offset to stay within s->object_size. (Note that no caches of in this size range are known to exist in the kernel currently.)

Published: May 21, 2024; 11:15:11 AM -0400
V4.0:(not available)
V3.x:(not available)
V2.0:(not available)